Smart Remote 3 nRF52 v1.2
SigProc_FIX.h
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifndef SILK_SIGPROC_FIX_H
29 #define SILK_SIGPROC_FIX_H
30 
31 #ifdef __cplusplus
32 extern "C"
33 {
34 #endif
35 
36 /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
37 
38 #define SILK_MAX_ORDER_LPC 24 /* max order of the LPC analysis in schur() and k2a() */
39 
40 #include <string.h> /* for memset(), memcpy(), memmove() */
41 #include "typedef.h"
42 #include "resampler_structs.h"
43 #include "macros.h"
44 #include "cpu_support.h"
45 
46 #if defined(OPUS_X86_MAY_HAVE_SSE4_1)
47 #include "x86/SigProc_FIX_sse.h"
48 #endif
49 
50 #if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR))
51 #include "arm/biquad_alt_arm.h"
52 #include "arm/LPC_inv_pred_gain_arm.h"
53 #endif
54 
55 /********************************************************************/
56 /* SIGNAL PROCESSING FUNCTIONS */
57 /********************************************************************/
58 
62 opus_int silk_resampler_init(
63  silk_resampler_state_struct *S, /* I/O Resampler state */
64  opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
65  opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */
66  opus_int forEnc /* I If 1: encoder; if 0: decoder */
67 );
68 
72 opus_int silk_resampler(
73  silk_resampler_state_struct *S, /* I/O Resampler state */
74  opus_int16 out[], /* O Output signal */
75  const opus_int16 in[], /* I Input signal */
76  opus_int32 inLen /* I Number of input samples */
77 );
78 
82 void silk_resampler_down2(
83  opus_int32 *S, /* I/O State vector [ 2 ] */
84  opus_int16 *out, /* O Output signal [ len ] */
85  const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
86  opus_int32 inLen /* I Number of input samples */
87 );
88 
92 void silk_resampler_down2_3(
93  opus_int32 *S, /* I/O State vector [ 6 ] */
94  opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
95  const opus_int16 *in, /* I Input signal [ inLen ] */
96  opus_int32 inLen /* I Number of input samples */
97 );
98 
104 void silk_biquad_alt_stride1(
105  const opus_int16 *in, /* I input signal */
106  const opus_int32 *B_Q28, /* I MA coefficients [3] */
107  const opus_int32 *A_Q28, /* I AR coefficients [2] */
108  opus_int32 *S, /* I/O State vector [2] */
109  opus_int16 *out, /* O output signal */
110  const opus_int32 len /* I signal length (must be even) */
111 );
112 
113 void silk_biquad_alt_stride2_c(
114  const opus_int16 *in, /* I input signal */
115  const opus_int32 *B_Q28, /* I MA coefficients [3] */
116  const opus_int32 *A_Q28, /* I AR coefficients [2] */
117  opus_int32 *S, /* I/O State vector [4] */
118  opus_int16 *out, /* O output signal */
119  const opus_int32 len /* I signal length (must be even) */
120 );
121 
122 /* Variable order MA prediction error filter. */
123 void silk_LPC_analysis_filter(
124  opus_int16 *out, /* O Output signal */
125  const opus_int16 *in, /* I Input signal */
126  const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
127  const opus_int32 len, /* I Signal length */
128  const opus_int32 d, /* I Filter order */
129  int arch /* I Run-time architecture */
130 );
131 
132 /* Chirp (bandwidth expand) LP AR filter */
133 void silk_bwexpander(
134  opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
135  const opus_int d, /* I Length of ar */
136  opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
137 );
138 
139 /* Chirp (bandwidth expand) LP AR filter */
140 void silk_bwexpander_32(
141  opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
142  const opus_int d, /* I Length of ar */
143  opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
144 );
145 
146 /* Compute inverse of LPC prediction gain, and */
147 /* test if LPC coefficients are stable (all poles within unit circle) */
148 opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */
149  const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
150  const opus_int order /* I Prediction order */
151 );
152 
153 /* Split signal in two decimated bands using first-order allpass filters */
154 void silk_ana_filt_bank_1(
155  const opus_int16 *in, /* I Input signal [N] */
156  opus_int32 *S, /* I/O State vector [2] */
157  opus_int16 *outL, /* O Low band [N/2] */
158  opus_int16 *outH, /* O High band [N/2] */
159  const opus_int32 N /* I Number of input samples */
160 );
161 
162 #if !defined(OVERRIDE_silk_biquad_alt_stride2)
163 #define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((void)(arch), silk_biquad_alt_stride2_c(in, B_Q28, A_Q28, S, out, len))
164 #endif
165 
166 #if !defined(OVERRIDE_silk_LPC_inverse_pred_gain)
167 #define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((void)(arch), silk_LPC_inverse_pred_gain_c(A_Q12, order))
168 #endif
169 
170 /********************************************************************/
171 /* SCALAR FUNCTIONS */
172 /********************************************************************/
173 
174 /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
175 /* Convert input to a log scale */
176 opus_int32 silk_lin2log(
177  const opus_int32 inLin /* I input in linear scale */
178 );
179 
180 /* Approximation of a sigmoid function */
181 opus_int silk_sigm_Q15(
182  opus_int in_Q5 /* I */
183 );
184 
185 /* Approximation of 2^() (exact inverse of approx log2() above) */
186 /* Convert input to a linear scale */
187 opus_int32 silk_log2lin(
188  const opus_int32 inLog_Q7 /* I input on log scale */
189 );
190 
191 /* Compute number of bits to right shift the sum of squares of a vector */
192 /* of int16s to make it fit in an int32 */
193 void silk_sum_sqr_shift(
194  opus_int32 *energy, /* O Energy of x, after shifting to the right */
195  opus_int *shift, /* O Number of bits right shift applied to energy */
196  const opus_int16 *x, /* I Input vector */
197  opus_int len /* I Length of input vector */
198 );
199 
200 /* Calculates the reflection coefficients from the correlation sequence */
201 /* Faster than schur64(), but much less accurate. */
202 /* uses SMLAWB(), requiring armv5E and higher. */
203 opus_int32 silk_schur( /* O Returns residual energy */
204  opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
205  const opus_int32 *c, /* I correlations [order+1] */
206  const opus_int32 order /* I prediction order */
207 );
208 
209 /* Calculates the reflection coefficients from the correlation sequence */
210 /* Slower than schur(), but more accurate. */
211 /* Uses SMULL(), available on armv4 */
212 opus_int32 silk_schur64( /* O returns residual energy */
213  opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
214  const opus_int32 c[], /* I Correlations [order+1] */
215  opus_int32 order /* I Prediction order */
216 );
217 
218 /* Step up function, converts reflection coefficients to prediction coefficients */
219 void silk_k2a(
220  opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
221  const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
222  const opus_int32 order /* I Prediction order */
223 );
224 
225 /* Step up function, converts reflection coefficients to prediction coefficients */
226 void silk_k2a_Q16(
227  opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
228  const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
229  const opus_int32 order /* I Prediction order */
230 );
231 
232 /* Apply sine window to signal vector. */
233 /* Window types: */
234 /* 1 -> sine window from 0 to pi/2 */
235 /* 2 -> sine window from pi/2 to pi */
236 /* every other sample of window is linearly interpolated, for speed */
237 void silk_apply_sine_window(
238  opus_int16 px_win[], /* O Pointer to windowed signal */
239  const opus_int16 px[], /* I Pointer to input signal */
240  const opus_int win_type, /* I Selects a window type */
241  const opus_int length /* I Window length, multiple of 4 */
242 );
243 
244 /* Compute autocorrelation */
245 void silk_autocorr(
246  opus_int32 *results, /* O Result (length correlationCount) */
247  opus_int *scale, /* O Scaling of the correlation vector */
248  const opus_int16 *inputData, /* I Input data to correlate */
249  const opus_int inputDataSize, /* I Length of input */
250  const opus_int correlationCount, /* I Number of correlation taps to compute */
251  int arch /* I Run-time architecture */
252 );
253 
254 void silk_decode_pitch(
255  opus_int16 lagIndex, /* I */
256  opus_int8 contourIndex, /* O */
257  opus_int pitch_lags[], /* O 4 pitch values */
258  const opus_int Fs_kHz, /* I sampling frequency (kHz) */
259  const opus_int nb_subfr /* I number of sub frames */
260 );
261 
262 opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
263  const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
264  opus_int *pitch_out, /* O 4 pitch lag values */
265  opus_int16 *lagIndex, /* O Lag Index */
266  opus_int8 *contourIndex, /* O Pitch contour Index */
267  opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
268  opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
269  const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
270  const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
271  const opus_int Fs_kHz, /* I Sample frequency (kHz) */
272  const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
273  const opus_int nb_subfr, /* I number of 5 ms subframes */
274  int arch /* I Run-time architecture */
275 );
276 
277 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
278 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
279 void silk_A2NLSF(
280  opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
281  opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
282  const opus_int d /* I Filter order (must be even) */
283 );
284 
285 /* compute whitening filter coefficients from normalized line spectral frequencies */
286 void silk_NLSF2A(
287  opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
288  const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
289  const opus_int d, /* I filter order (should be even) */
290  int arch /* I Run-time architecture */
291 );
292 
293 /* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */
294 void silk_LPC_fit(
295  opus_int16 *a_QOUT, /* O Output signal */
296  opus_int32 *a_QIN, /* I/O Input signal */
297  const opus_int QOUT, /* I Input Q domain */
298  const opus_int QIN, /* I Input Q domain */
299  const opus_int d /* I Filter order */
300 );
301 
302 void silk_insertion_sort_increasing(
303  opus_int32 *a, /* I/O Unsorted / Sorted vector */
304  opus_int *idx, /* O Index vector for the sorted elements */
305  const opus_int L, /* I Vector length */
306  const opus_int K /* I Number of correctly sorted positions */
307 );
308 
309 void silk_insertion_sort_decreasing_int16(
310  opus_int16 *a, /* I/O Unsorted / Sorted vector */
311  opus_int *idx, /* O Index vector for the sorted elements */
312  const opus_int L, /* I Vector length */
313  const opus_int K /* I Number of correctly sorted positions */
314 );
315 
316 void silk_insertion_sort_increasing_all_values_int16(
317  opus_int16 *a, /* I/O Unsorted / Sorted vector */
318  const opus_int L /* I Vector length */
319 );
320 
321 /* NLSF stabilizer, for a single input data vector */
322 void silk_NLSF_stabilize(
323  opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
324  const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
325  const opus_int L /* I Number of NLSF parameters in the input vector */
326 );
327 
328 /* Laroia low complexity NLSF weights */
329 void silk_NLSF_VQ_weights_laroia(
330  opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
331  const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
332  const opus_int D /* I Input vector dimension (even) */
333 );
334 
335 /* Compute reflection coefficients from input signal */
336 void silk_burg_modified_c(
337  opus_int32 *res_nrg, /* O Residual energy */
338  opus_int *res_nrg_Q, /* O Residual energy Q value */
339  opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
340  const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
341  const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
342  const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
343  const opus_int nb_subfr, /* I Number of subframes stacked in x */
344  const opus_int D, /* I Order */
345  int arch /* I Run-time architecture */
346 );
347 
348 /* Copy and multiply a vector by a constant */
349 void silk_scale_copy_vector16(
350  opus_int16 *data_out,
351  const opus_int16 *data_in,
352  opus_int32 gain_Q16, /* I Gain in Q16 */
353  const opus_int dataSize /* I Length */
354 );
355 
356 /* Some for the LTP related function requires Q26 to work.*/
357 void silk_scale_vector32_Q26_lshift_18(
358  opus_int32 *data1, /* I/O Q0/Q18 */
359  opus_int32 gain_Q26, /* I Q26 */
360  opus_int dataSize /* I length */
361 );
362 
363 /********************************************************************/
364 /* INLINE ARM MATH */
365 /********************************************************************/
366 
367 /* return sum( inVec1[i] * inVec2[i] ) */
368 
369 opus_int32 silk_inner_prod_aligned(
370  const opus_int16 *const inVec1, /* I input vector 1 */
371  const opus_int16 *const inVec2, /* I input vector 2 */
372  const opus_int len, /* I vector lengths */
373  int arch /* I Run-time architecture */
374 );
375 
376 
377 opus_int32 silk_inner_prod_aligned_scale(
378  const opus_int16 *const inVec1, /* I input vector 1 */
379  const opus_int16 *const inVec2, /* I input vector 2 */
380  const opus_int scale, /* I number of bits to shift */
381  const opus_int len /* I vector lengths */
382 );
383 
384 opus_int64 silk_inner_prod16_aligned_64_c(
385  const opus_int16 *inVec1, /* I input vector 1 */
386  const opus_int16 *inVec2, /* I input vector 2 */
387  const opus_int len /* I vector lengths */
388 );
389 
390 /********************************************************************/
391 /* MACROS */
392 /********************************************************************/
393 
394 /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
395  left. Output is 32bit int.
396  Note: contemporary compilers recognize the C expression below and
397  compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
398 static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
399 {
400  opus_uint32 x = (opus_uint32) a32;
401  opus_uint32 r = (opus_uint32) rot;
402  opus_uint32 m = (opus_uint32) -rot;
403  if( rot == 0 ) {
404  return a32;
405  } else if( rot < 0 ) {
406  return (opus_int32) ((x << m) | (x >> (32 - m)));
407  } else {
408  return (opus_int32) ((x << (32 - r)) | (x >> r));
409  }
410 }
411 
412 /* Allocate opus_int16 aligned to 4-byte memory address */
413 #if EMBEDDED_ARM
414 #define silk_DWORD_ALIGN __attribute__((aligned(4)))
415 #else
416 #define silk_DWORD_ALIGN
417 #endif
418 
419 /* Useful Macros that can be adjusted to other platforms */
420 #define silk_memcpy(dest, src, size) memcpy((dest), (src), (size))
421 #define silk_memset(dest, src, size) memset((dest), (src), (size))
422 #define silk_memmove(dest, src, size) memmove((dest), (src), (size))
423 
424 /* Fixed point macros */
425 
426 /* (a32 * b32) output have to be 32bit int */
427 #define silk_MUL(a32, b32) ((a32) * (b32))
428 
429 /* (a32 * b32) output have to be 32bit uint */
430 #define silk_MUL_uint(a32, b32) silk_MUL(a32, b32)
431 
432 /* a32 + (b32 * c32) output have to be 32bit int */
433 #define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32)))
434 
435 /* a32 + (b32 * c32) output have to be 32bit uint */
436 #define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32)
437 
438 /* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
439 #define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16))
440 
441 /* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
442 #define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
443 
444 #define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
445 
446 /* (a32 * b32) */
447 #define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32))
448 
449 /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
450  (just standard two's complement implementation-specific behaviour) */
451 #define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
452 /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
453  (just standard two's complement implementation-specific behaviour) */
454 #define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
455 
456 /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
457 #define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
458 #define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
459 
460 #define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
461 #define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
462 
463 /* These macros enables checking for overflow in silk_API_Debug.h*/
464 #define silk_ADD16(a, b) ((a) + (b))
465 #define silk_ADD32(a, b) ((a) + (b))
466 #define silk_ADD64(a, b) ((a) + (b))
467 
468 #define silk_SUB16(a, b) ((a) - (b))
469 #define silk_SUB32(a, b) ((a) - (b))
470 #define silk_SUB64(a, b) ((a) - (b))
471 
472 #define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
473  ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
474 #define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
475  ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
476 #define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
477  ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
478 
479 #define silk_CHECK_FIT8(a) (a)
480 #define silk_CHECK_FIT16(a) (a)
481 #define silk_CHECK_FIT32(a) (a)
482 
483 #define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
484 #define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
485  ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
486  ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
487 
488 #define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
489 #define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
490  (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
491  ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
492 
493 /* Saturation for positive input values */
494 #define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
495 
496 /* Add with saturation for positive input values */
497 #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b)))
498 #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b)))
499 #define silk_ADD_POS_SAT32(a, b) ((((opus_uint32)(a)+(opus_uint32)(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
500 
501 #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
502 #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
503 #define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
504 #define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
505 #define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
506 
507 #define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
508 #define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
509 #define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
510 #define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
511 #define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
512 
513 /* saturates before shifting */
514 #define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
515  silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
516 
517 #define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
518 #define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
519 #define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
520 
521 #define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
522 #define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
523 #define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
524 #define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
525 #define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
526 #define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
527 #define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
528 #define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
529 
530 /* Requires that shift > 0 */
531 #define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
532 #define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
533 
534 /* Number of rightshift required to fit the multiplication */
535 #define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
536 #define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
537 
538 
539 #define silk_min(a, b) (((a) < (b)) ? (a) : (b))
540 #define silk_max(a, b) (((a) > (b)) ? (a) : (b))
541 
542 /* Macro to convert floating-point constants to fixed-point */
543 #define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5f))
544 
545 /* silk_min() versions with typecast in the function call */
546 static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
547 {
548  return (((a) < (b)) ? (a) : (b));
549 }
550 static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
551 {
552  return (((a) < (b)) ? (a) : (b));
553 }
554 static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
555 {
556  return (((a) < (b)) ? (a) : (b));
557 }
558 static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
559 {
560  return (((a) < (b)) ? (a) : (b));
561 }
562 
563 /* silk_min() versions with typecast in the function call */
564 static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
565 {
566  return (((a) > (b)) ? (a) : (b));
567 }
568 static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
569 {
570  return (((a) > (b)) ? (a) : (b));
571 }
572 static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
573 {
574  return (((a) > (b)) ? (a) : (b));
575 }
576 static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
577 {
578  return (((a) > (b)) ? (a) : (b));
579 }
580 
581 #define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
582  : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
583 
584 #define silk_LIMIT_int silk_LIMIT
585 #define silk_LIMIT_16 silk_LIMIT
586 #define silk_LIMIT_32 silk_LIMIT
587 
588 #define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
589 #define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
590 #define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
591 #define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
592 
593 #define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
594 
595 /* PSEUDO-RANDOM GENERATOR */
596 /* Make sure to store the result as the seed for the next call (also in between */
597 /* frames), otherwise result won't be random at all. When only using some of the */
598 /* bits, take the most significant bits by right-shifting. */
599 #define RAND_MULTIPLIER 196314165
600 #define RAND_INCREMENT 907633515
601 #define silk_RAND(seed) (silk_MLA_ovflw((RAND_INCREMENT), (seed), (RAND_MULTIPLIER)))
602 
603 /* Add some multiplication functions that can be easily mapped to ARM. */
604 
605 /* silk_SMMUL: Signed top word multiply.
606  ARMv6 2 instruction cycles.
607  ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
608 /*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
609 /* the following seems faster on x86 */
610 #define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
611 
612 #if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
613 #define silk_burg_modified(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch) \
614  ((void)(arch), silk_burg_modified_c(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch))
615 
616 #define silk_inner_prod16_aligned_64(inVec1, inVec2, len, arch) \
617  ((void)(arch),silk_inner_prod16_aligned_64_c(inVec1, inVec2, len))
618 #endif
619 
620 #include "Inlines.h"
621 #include "MacroCount.h"
622 #include "MacroDebug.h"
623 
624 #ifdef OPUS_ARM_INLINE_ASM
625 #include "arm/SigProc_FIX_armv4.h"
626 #endif
627 
628 #ifdef OPUS_ARM_INLINE_EDSP
629 #include "arm/SigProc_FIX_armv5e.h"
630 #endif
631 
632 #if defined(MIPSr1_ASM)
633 #include "mips/sigproc_fix_mipsr1.h"
634 #endif
635 
636 
637 #ifdef __cplusplus
638 }
639 #endif
640 
641 #endif /* SILK_SIGPROC_FIX_H */

Documentation feedback | Developer Zone | Subscribe | Updated