
All rights reserved
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

2011-09-06

Generic data transfer using USB HID

nAN-22

Application Note v1.0

Keywords

• Generic data transfers to and from nRF24LU1+
• Simpler alternative for applications with small bandwidth requirements
• Built-in HID drivers in Microsoft Windows®/OS X®/Linux
• Fully documented Microsoft Windows example program with source code
• Free development platform, Visual C# express from Microsoft

Generic data transfer using USB HID
Contents

1 Introduction ...3
2 USB-HID ...4
2.1 When to use HID ..4
2.2 HID descriptors ...4
3 Project setup..6
3.1 Required hardware ...6
3.2 Required software...6
3.3 Project structure..6
4 Implementation..7
4.1 nRF24LU1+ USB HID firmware ..7
4.1.1 Configuration..7
4.1.2 USB descriptors ...8
4.1.3 HID descriptor ..9
4.1.4 Report descriptor (g_usb_hid_report_data)10
4.2 nRF24LU1+ application specific firmware ...11
4.3 Host application: interaction with the USB HID library..........................11
4.3.1 Configuration..11
4.3.2 Sending data to nRF24LU1+..13
4.3.3 Receiving data from nRF24LU1+...13
4.4 Host application: overview ..13
4.4.1 Main form ...14
4.4.2 Progress window..15
4.5 Host application structure ...15
4.5.1 Communication ..16
4.5.2 Loading a HEX file..16
4.5.3 Transferring the loaded firmware ...16
4.5.4 Verifying the remote firmware ..16
5 References ...16
Revision 1.0 Page 2 of 17

nAN-22
1 Introduction
The Universal Serial Bus is the de facto industry standard for the connection of computer peripherals, with
approximately two billion sold devices every year. The success of USB is in large part due to its end
product ease of use. However, such simplicity comes at a price, as the developer is often burdened with
creating complex USB drivers. Fortunately, there is a simpler way to provide devices with USB support.

To avoid the complexity of creating USB drivers when working with generic data transfers, you can use the
standard HID class of USB devices, with built-in drivers in all modern operating systems.

This application note primarily describes how to use HID to transfer data between a Microsoft Windows
application and the nRF24LU1+. It also goes into some detail about the example application, an over-the-
air firmware flash updater for the nRF24LE1 using the combined USB and RF features of the nRF24LU1+.
The specifics of the radio transmission protocol and the nRF24LE1 firmware are discussed in another
application note, nAN-18.

The implementation sections for the nRF24LU1+ and the host application are separated into two
subsections: One subsection describing details of using the HID class for USB data transfers, and one
explaining the specifics of the firmware update application. These sections correspond to the marked parts
of Figure 1.

 Figure 1. Implementation split into PC part and nRF24LU1+ part

This application note assumes that the reader is familiar with the following topics:

• Windows Forms development using C#
• C programming of Nordic Semiconductor devices using KeilTMµVision
• USB protocol and specification, including basic understanding of central subtopics like enumeration,

transfer types, endpoints, and descriptors

Terminology from these technologies is used throughout this document. Users unfamiliar with this
terminology can refer to documentation listed in the references section of this application note.

Specific Windows
application

USB HID Library
interface

HID Driver

Application
specific firmware

USB HID
Firmware

HAL

PC nRF24LU1+

Physical USB Layer

USB HID Library
Revision 1.0 Page 3 of 17

Generic data transfer using USB HID
2 USB-HID
HID is a standard USB device classification meant to include all kinds of Human Interface Devices, such as
computer keyboards and mice, medical instruments and video game controllers. The HID class provides
great flexibility by incorporating the concept of Reports containing the transferred data.

HID devices provide descriptors for these reports to the host, which contain information about what kind of
data they represent, such as mouse cursor movement. By describing the reports as being vendor specific,
it is possible to use them as simple data packets, leaving the interpretation of the contents completely up to
the specific application.

HID only supports Interrupt transfers in addition to the obligatory control transfers. This implies guaranteed
transfer intervals, but also limited bandwidth as the minimum transfer interval is 1 ms, and the packet size
is restricted to a maximum of 64 bytes.

2.1 When to use HID
There are several advantages, but also some disadvantages to using HID for your generic data transfers.
In simple terms, if you can live with the bandwidth restrictions, you should seriously consider using HID,
unless you have the time and desire to write your own custom drivers.

Here is a short list of pros and cons you should be aware of:

Pros:

• Existing drivers drastically reduce development effort.
• Guaranteed data transfer rate and latency with USB Interrupt transfers.
• Platform independent standard, supported by all modern operating systems.

Cons:

• Maximum theoretical data transfer rate of 64 kB/s.

2.2 HID descriptors
All USB devices must have a set of descriptors defining various parameters and information about them.
At enumeration, which happens upon connection of the device, these descriptors are requested by the
host. The host uses this information to determine the drivers needed to interact with the device, which in
turn might request even more specific descriptors.

The obligatory descriptors that must be provided by all USB devices are displayed on the left side of Figure
2. on page 5, while the descriptors specific to HID standard devices are displayed on the right, inside the
dotted line. If you are unfamiliar with the standard USB descriptors, we encourage you to read up on them
in one of the relevant links in the references section.
Revision 1.0 Page 4 of 17

nAN-22
 Figure 2. USB descriptors

As a part of the interface descriptor it is possible to specify a standard USB class, such as HID, which
usually also determines what drivers the host should load. In the case of a HID device, the built-in drivers
of the operating system will request a specific set of HID descriptors. This includes a HID descriptor, at
least one report descriptor, and lastly, an optional set of physical descriptors which are not considered in
this application note.

The HID descriptor essentially works as a table of contents for the report and physical descriptors by
specifying their count, types, and sizes. Our application-specific HID descriptor is described with an
explanation of the fields in the implementation section.

Report descriptors, as mentioned earlier, describe the format and the meaning of data sent and received
by the HID class device. A report descriptor consists of several fields called items which are used together
with corresponding data fields to describe various aspects of what the report data represents. The number
of items included in a report descriptor is variable, making the amount of details highly flexible. The
example report descriptor used by our application is given in the implementation section, along with brief
Revision 1.0 Page 5 of 17

Generic data transfer using USB HID
explanations of fields. The interested reader will find more information on report descriptors in the HID
specification.

3 Project setup
This application note and the attached code are part of a project which describes how to update
application-specific firmware over RF. To fully utilize the project to update application-specific firmware
over RF, you will need the hardware, software and project structure listed in this chapter. See the
application note nAN-18 for further reference.

To set up the attached project correctly you will need the following hardware, software, and project
structure. If you are only interested in the USB HID part, there is no need for the nRF24LE1-specific
hardware which is referred to within parantheses in the following lists.

3.1 Required hardware

• nRFgo Development Kit nRF24LU1P-FxxQ32-DK, nRF24LU1+
• (nRFgo Development Kit nRF24LE1-F16Qxx-DK, nRF24LE1)
• nRF6310 Motherboard (x2)
• PC workstation with USB

3.2 Required software

• Keil µVision V4
• C51 Compiler
• BL51 Linker
• nRFgo Software Development Kit, version 2.2
• Windows 7: 32-bit, 64-bit
• Microsoft Visual C# 2010 Express

3.3 Project structure
Firmware updater

• (Bootloader nRF24LE1)
• Common
• USB-RF adapter nRF24LU1+
• Host application
• Precompiled HEX

If you have not already done so, you should install Keil µVision and the nRFgo Software Development Kit
(SDK). Once you have done this, you can place the Firmware_updater folder in the …\nRFgo SDK
2.2.0.270\source_code\projects\nrfgo_sdk folder. This will ensure that the predefined project files will have
the correct include paths to compiler- and hal-directives. If you wish to place the project at a different
location you will have to set the include paths manually in Keil µVision. These are found under Project –
Options for Target ‘…’ - C51 – Include Paths.

You will find the Keil µVision project files for the nRF24LE1 update firmware in the boot loader nRF24LE1
folder. A precompiled HEX file for the nRF24LE1 update firmware is found in the precompiled HEX folder.
This HEX file can be flashed directly to the chip if you do not want to build the project files before you test
out the functionality.

Demo firmware that can be used as the new firmware, is found in the Precompiled-HEX folder.
Revision 1.0 Page 6 of 17

Generic data transfer using USB HID
4 Implementation

4.1 nRF24LU1+ USB HID firmware
Focusing on the USB handling, the nRF24LU1+ firmware main loop can be visualized like the flowchart of
Figure 3. with a USB routine manipulating the application state based on the received commands and
data. This basic program flow is very simple, and you can use it for your own applications using HID. The
setup of the USB HID communication is, unfortunately, not so simple. Using Hardware Abstraction Layer
(HAL) functions simplifies setup somewhat, but one still has to tailor the USB descriptors to make the
application function and appear correct to the host.

 Figure 3. USB firmware flowchart

4.1.1 Configuration
To initiate the USB controller, we call the function hal_usb_init in our main function, which registers user-
defined callback functions:

// USB HAL initialization
hal_usb_init(true, device_req_cb, reset_cb, resume_cb, suspend_cb);

The important thing to note here when using HID is the function device_req_cb which must handle USB
requests specific to the HID subsystem. Our device_req_cb function simply forwards the request to the
HAL function hal_usb_hid_device_req_proc which takes care of this for us. The three other callbacks let
you implement functionality on the reset, resume, or suspend USB commands. The init function also loads
the descriptors which are discussed in the following subsection.

Next, we configure the endpoints, in our example one IN endpoint, and one OUT endpoint:

hal_usb_endpoint_config(0x81, EP1_2_PACKET_SIZE, ep_1_in_cb); hal_usb_endpoint_config(0x02,
EP1_2_PACKET_SIZE, ep_2_out_cb);

These functions set the endpoint addresses, maximum sizes, and callbacks which will be called when a
transaction in either direction completes. For OUT endpoint callbacks (directed to our device), it is a good
practice to copy the data from the USB buffer and set a received data flag. This way, the USB buffer is
quickly made ready for another packet. For IN endpoint callbacks, you should set a flag indicating that data

Check for

USB commands

Set application
state

Application
state machine

Command
received Yes

No
Revision 1.0 Page 7 of 17

Generic data transfer using USB HID
has been sent. By checking this flag before you try to send more data, you avoid undefined behavior when
trying to send when a transaction is already in progress.

4.1.2 USB descriptors
usb_desc.c contains all the descriptor definitions for our device, while some descriptor structures and
central parameters are defined in usb_desc.h for easier modification. If you are looking to make some
small changes, you can modify the packet size, polling interval, Vendor ID and Product ID, just by editing
the constants in the header file.

For more significant changes like adding interfaces or endpoints, you will need to modify the descriptor
structures directly. The following tables give brief explanations of the essential descriptor structures found
in the two descriptor files:

4.1.2.1 usb_desc.h

 Table 1. Descriptor structures of usb_desc.h

Structure Description
usb_conf_desc_templ_t Declaration of the configuration

descriptor structure. This must declare
fields for the basic configuration
descriptor, all interface descriptors, HID
descriptors, and endpoint descriptors.
You have to modify this if you want to
change the number of interfaces or
endpoints.

VID Vendor ID Constant used in the device
descriptor.

PID Product ID Constant used in the device
descriptor.

MAX_PACKET_SIZE_EP0 Constant defining endpoint 0 maximum
packet size. This must be at least the
size of the largest other endpoint.

EP1_2_PACKET_SIZE Constant defining endpoint 1 and 2
maximum packet size, as well as the
HID report sizes. For our implementation
this can be maximum 32 bytes.

EP1_POLLING_INTERVAL Constant defining milliseconds between
interrupt messages for endpoint 1.

EP2_POLLING_INTERVAL Constant defining milliseconds between
interrupt messages for endpoint 2.

USB_STRING_DESC_CO
UNT

Constant defining the number of used
string descriptors.
Revision 1.0 Page 8 of 17

Generic data transfer using USB HID
4.1.2.2 usb_desc.c

 Table 2. Descriptor structures of usb_desc.c

4.1.3 HID descriptor
Our HID descriptor is shown in Table 3.. It is fairly straightforward, and all you have to do to add more
report (or physical) descriptors, is to increase the bNumDecriptors field, and add the type and length fields
for all of them. This descriptor is defined as a part of the configuration descriptor (g_usb_conf_desc) found
in usb_desc.c.

 Table 3. HID descriptor

Structure Description
g_usb_dev_desc Specification of the device descriptor
g_usb_conf_desc Specification of the configuration

descriptor. Include specifications of the
interface, HID, and endpoint descriptors.

g_usb_hid_report_data HID report descriptor for our vendor-
specific data endpoints. If you want to
specify your own report descriptors, you
must make similar structures.

g_usb_hid_hids Contains all HID descriptors, along with
their report descriptors.

g_usb_string_desc Array of the string descriptors. Observe
the format of the string descriptor and
remember that the size must include the
descriptor type and size itself.

Field Value Description
bLength sizeof(hal_usb_hid_des

c_t)
Size in bytes of this
descriptor

bDescriptorType USB_CLASS_DESCRI
PTOR_HID

HID descriptor
identifier. (0x21)

bcdHID 0x0110 Specify HID version
1.11

bCountryCode 0x00 Set country code to 0,
as it is not relevant for
our device.

bNumDescriptors 0x01 The number of
following HID specific
descriptors

bDescriptorType USB_CLASS_DESCRI
PTOR_REPORT

The first following HID
specific descriptor is a
report descriptor.
(0x22)

wDescriptorLength sizeof(g_usb_hid_repor
t_data)

Size of our report
descriptor
Revision 1.0 Page 9 of 17

Generic data transfer using USB HID
4.1.4 Report descriptor (g_usb_hid_report_data)
Even though we are only considering simple data transfers in this application note, we still need a report
descriptor containing the bare minimum required for it to be recognized as a HID device. We have included
it in section 4.2 on page 11, with a brief explanation of its fields.

The report descriptor items start with an 8 bit type definition, consisting of a 4 bit tag specifying the item
function, a 2 bit type, and a 2 bit size indicating the number of bytes of related data. All report descriptor
data are represented in little endian format. If you need several different types of reports, you also need to
include a report ID for each of them. See the HID specification for more on this subject.

 Table 4. Report descriptor

Item type (bTag
bType)

Value size
(bSize) Value (data) Description

Usage page
(0000 01)

10 Vendor defined
page 1

(0xFF00)

Specify vendor
usage page 1.

Usage
(0000 10)

01 Vendor Usage 1
(0x01)

Specify vendor
usage 1. As we
have application
specific
interpretation of the
reports, these
usages are only for
compatibility.

Collection (1010
00)

01 0 (0x00) Application
collection start

Logical minimum
(0001 01)

01 0 (0x00) Minimum logic value
of report bytes

Logical maximum
(0010 01)

01 255 (0xFF) Maximum logic
value of report bytes

Report size
(0111 01)

01 8
(0x08)

8 bit report bytes

Report count
(1001 01)

01 32
EP1_2_PACKET_SI

ZE(0x20)

Number of bytes in
report

Input
(1000 00)

01 Variable data
(0000 0010)

Specify input report
with previously
defined parameters.

Usage
(0000 10)

01 Vendor Usage 1
(0x01)

Specify vendor
usage 1.

Output
(1001 00)

01 Variable data
(0000 0010)

Specify output
report with
previously defined
parameters.

End collection
(1100 00)

00 N/A Application
collection end
Revision 1.0 Page 10 of 17

Generic data transfer using USB HID
4.2 nRF24LU1+ application specific firmware
In our application the nRF24LU1+ works as a communication adapter between the USB interface of the
computer, and the RF interface of the nRF24LE1. The functionality can be summed up with these points:

• Establishing USB communication with the computer, as described in the previous section
• Upon order from the host application, establishing an RF communication channel with the

nRF24LE1
• Keeping the host up to date on the connection status with the remote device
• Forwarding selected messages from the host to the nRF24LE1, and relaying the corresponding

responses back to the host

The specific application state machine mentioned in Figure 3. on page 7 for this application, and details
concerning the RF communications with the nRF24LE1 are provided in the separate application note,
nAN-18.

4.3 Host application: interaction with the USB HID library

4.3.1 Configuration
The host application interacts with a USB HID library which helps us configure and use the Windows HID
drivers. The configuration process is illustrated with the sequence diagram of Figure 4. on page 12. We
start with registering the VID and PID of our device, and subscribing to events which are fired when the
device connects and disconnects, and data is sent and received. This setup procedure is done with an
instance of the “UsbHidPort” class, which represents the USB HID Library. The “UsbHidPort” class is
defined in the “USBHIDLib” namespace.
Revision 1.0 Page 11 of 17

Generic data transfer using USB HID
 Figure 4. Host USB HID configuration steps
The USB HID library depends on the handle of our application, and its task is to forward device connection
messages provided by Windows. The handle is the identifier for our form used by Windows, and its
assignment happens at runtime. “OnHandleCreated” is a standard method called upon its creation that we
must implement. In it, we must forward the handle to the “UsbHidPort” instance, so that it can make sure
we receive notifications when Windows detects new HID devices.

The notification messages are provided to us through another standard method, “WndProc“. We forward
these as well, leaving their interpretation to the USB HID library which notifies the application if the
message was related to our specific device.

Both of these methods are found in our main form “nRFupdateForm”, and you should copy them into your
own main Form when creating another Windows forms application.

Operating

system
Windows

application
USB HID
Library

Provide handle

Forward handle

Register for HID device
connection messages

New message

Forward message

Device connected

Interpret
message

Set VID/PID

Register for events

Connect USB
device to PC

Program start
Revision 1.0 Page 12 of 17

Generic data transfer using USB HID
4.3.2 Sending data to nRF24LU1+
Sending data is done by calling the method “UsbHidPort.SpecifiedDevice.SendData(transferData)”.

“UsbHidPort” is replaced by the name of the class instance. “transferData” is a byte array within the
bounds of our specified packet size (defined by the report descriptor of nRF24LU1+).

In our implementation we use the function SendDataAndWait, which wraps the send function call together
with a waiting loop exiting when the transfer is reported as complete.

4.3.3 Receiving data from nRF24LU1+
When data is received, the “OnDataRecieved” event of the “UsbHidPort” class is triggered. The received
data is passed as a custom event argument class called “DataReceivedEventArgs”, which is defined in the
“USBHIDLib” namespace. This class just contains a byte array with the length of the input report. We must
add a new “DataReceivedEventHandler” and in the provided method decide what to do with the received
data. In our solution this method is called “usb_OnDataRecieved”.

4.4 Host application: overview
As mentioned, our example application is the nRF Update firmware updater. Here is a quick summary of its
most important features before we go into some more detail:

• Graphical user interface with intuitive controls and responsiveness to lower level events.
• Loading and verification of Keil compiled HEX firmware files targeted at the nRF24LE1.
• Line by line firmware transaction and verification ensuring a safe update together with the

sophisticated update firmware on the nRF24LE1.
Revision 1.0 Page 13 of 17

Generic data transfer using USB HID
4.4.1 Main form
The main window, or form, of our application can be seen in Figure 5. Below it you will find a list explaining
the different fields and buttons.

 Figure 5. Main form

1. Field displaying a received number indicating what kind of supported device we have connected
to. Might be replaced by an enumerator to display a more descriptive name.

2. Field displaying a number indicating the version of the currently running firmware on the remote
RF device. N/A if the device reports no valid firmware.

3. Status label indicating whether we are connected, disconnected, or searching for a remote RF
device.

4. Button with different functionality depending on connection status. Initiates search for remote
device if currently disconnected, aborts a search in progress if searching, and disconnects with
the device if we are currently connected.

5. Button opening a file system browser for selection of a HEX file to load. When a HEX file is
selected, a file verification procedure is automatically run, checking for valid HEX symbols,
format and checksums. The result of the file verification procedure is shown as either Valid or
Invalid, and in the case of an invalid HEX file, a more detailed error is displayed in the status
textbox.

6. Checkbox for automatic verification. If checked, the program will automatically initiate verification
when the firmware update is completed.

1 2

4

5

9 8 7 6

11 10
Revision 1.0 Page 14 of 17

Generic data transfer using USB HID
7. Button initiating a line by line transaction of the selected HEX file. Enabled when a valid HEX file
is loaded and we have a connection with a remote device.

8. Button initiating verification of the currently installed firmware on the remote device. Based on the
currently loaded HEX file, each line is individually fetched and compared to check for errors.

9. Button for running the firmware after a successful firmware update. The functionality is identical
to that of the disconnect button, and it is only included for clarity.

10. Textbox for detailed status messages.
11. Status label for the USB RF Adapter. Either connected or disconnected.

4.4.2 Progress window
Upon initiation of a firmware update or verification, a progress form is displayed, featuring a progress bar
and a combined cancel and close button, as seen in Figure 6. The cancel functionality is enabled while a
transaction is in progress, while the close functionality is enabled upon completion or cancelling of a
transaction.

 Figure 6. Progress form

4.5 Host application structure
The two main classes of our application are the GUI class “nRFupdateForm” and the controller class “nRF
updateControl”, shown in Figure 7. Basically, the Form communicates with the controller by calling its
methods, while the controller keeps the form up to date by raising events.

 Figure 7. nRF firmware updater

The responsibilities of the “nRFupdateForm” class is limited to creating an intuitive presentation of the
lower level events, and should not require further explanation beyond the comments found in its source
code.

The “nRFupdateControl” class contains our application specific program logic, and is responsible for file I/
O and communication with the nRF24LU1+ through the USB library. Most of the communication with the

nRFupdateForm

USB Library

HID Driver

nRFupdateControl
Revision 1.0 Page 15 of 17

Generic data transfer using USB HID
nRF24LU1+ is just passed on to the nRF24LE1, so we will in the context of explaining the application
consider all communication to happen between it and the nRF24LE1, unless explicitly noted otherwise.

4.5.1 Communication
All communication is initiated with a command from the host application, and concluded with a response
from the nRF24LE1 in the form of an ACK or a NACK. The only exception is an unrequested NACK which
is sent by the nRF24LU1+ when it unintentionally loses its connection with the nRF24LE1. If the sent
command implies the return of data, this will be attached as payload to the corresponding ACK or NACK.

As the meaning of an ACK or a NACK is determined by the preceding command, we keep a variable called
“expectedAck” aiding us in deciding what to do when one is received. When a USB message is received
we call an ACK or a NACK handler, correspondingly, which in turn determines what to do depending on
“expectedAck”.

4.5.2 Loading a HEX file
When a HEX file is selected in the GUI, we first load its contents into a character array, before it is parsed
into individual binary HEX lines. The HEX lines’ length and checksum are calculated and compared with its
respective fields, and the line lengths are summed so we know the total binary size of the firmware. When
the HEX line with the reset vector is found (address zero), it is stored so we later may send it as part of the
update start command.

4.5.3 Transferring the loaded firmware
The firmware transaction is initiated by sending the previously determined size and reset vector as well as
a version optionally input in the main window. Also, a checksum for this initiation packet is calculated and
provided. For more details on the communication protocol, see the application note nAN-18.

4.5.4 Verifying the remote firmware
The verification procedure uses the loaded HEX file to request specific addresses based on its HEX lines.
If the received data does not match the stored HEX line, it is re-requested once before the verification
procedure reports a defect remote firmware.

5 References
Visit the link www.usb.org/developers/hidpage.html for a USB HID specification, HID-usages tables, and
HID report descriptor tool.

For the USB specification, refer to www.usb.org/developers/docs.html.

A good introduction to the USB standard can be found at http://www.beyondlogic.org/usbnutshell/
usb1.shtml.
Revision 1.0 Page 16 of 17

http://www.usb.org/developers/hidpage.html
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.beyondlogic.org/usbnutshell/usb1.shtml

Generic data transfer using USB HID
Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications
Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details
For your nearest dealer, please see http://www.nordicsemi.com

Receive available updates automatically by subscribing to eNews from our homepage or check our
website regularly for any available updates.

Main office:

Otto Nielsens veg 12
7004 Trondheim

Phone: +47 72 89 89 00
Fax: +47 72 89 89 89
www.nordicsemi.com

Revision History

Date Version Description
September 2011 1.0
Revision 1.0 Page 17 of 17

http://www.nordicsemi.no
http://www.nordicsemi.no

	Generic data transfer using USB HID
	Application Note v1.0
	1 Introduction
	2 USB-HID
	2.1 When to use HID
	2.2 HID descriptors

	3 Project setup
	3.1 Required hardware
	3.2 Required software
	3.3 Project structure

	4 Implementation
	4.1 nRF24LU1+ USB HID firmware
	4.2 nRF24LU1+ application specific firmware
	4.3 Host application: interaction with the USB HID library
	4.4 Host application: overview
	4.5 Host application structure

	5 References

