
nRF Command Line Tools
v10.11.1

User Guide
v1.4

4397_662 v1.4 / 2020-11-24

Contents
Revision history. iii

1 Introduction. 5

2 Installing the nRF Command Line Tools. 6
2.1 nRF Command Line Tools file structure . 6

2.1.1 Windows file structure . 6
2.1.2 Linux file structure . 7
2.1.3 MacOS file structure . 9

3 Merging files with mergehex. 12

4 Programming SoCs with nrfjprog. 13
4.1 nrfjprog commands . 13
4.2 nrfjprog return codes . 20

5 nrfjprog DLL. 24
5.1 Loading the DLL . 24

5.1.1 Linking against the DLL . 24
5.1.2 Loading the DLL at run-time . 24

5.2 Calling DLL functions . 26
5.3 DLL functions in nrfjprogdll.h . 26

Legal notices. 30

4397_662 v1.4 ii

Revision history

Date Version Description

November
2020

1.4 Updated to match nRF Command Line Tools v10.11.1:

• Installing the nRF Command Line Tools on page 6: Updated
installation instructions for Linux and macOS

• nRF Command Line Tools file structure on page 6: Added the
nRF53 and nRF91 families

• Windows file structure on page 6: Added the high-level DLL
• Merging files with mergehex on page 12: Removed the limitation

of a maximum of three HEX files
• nrfjprog commands on page 13: Added --log [<path>],

--ini <file>, --com, --deviceversion, and --
coprocessor <coprocessor>

• nrfjprog return codes on page 20: Added
NrfjprogIniSyntaxError, UnavailableOperationBecauseTrustZone,
UnavailableOperationBecauseBPROT, InternalError,
NrfjprogQspiIniCustomMissingError, and LogWritePermissionWarning

• Added Linking against the DLL on page 24
• DLL functions in nrfjprogdll.h on page 26: Added

DLL functions NRFJPROG_enum_emu_com,
NRFJPROG_reset_connected_emu,
NRFJPROG_replace_connected_emu_fw,
NRFJPROG_read_connected_emu_fwstr,
NRFJPROG_is_coprocessor_enabled,
NRFJPROG_enable_coprocessor,
NRFJPROG_disable_coprocessor,
NRFJPROG_select_coprocessor,
NRFJPROG_is_eraseprotect_enabled,
NRFJPROG_enable_eraseprotect,
NRFJPROG_is_bprot_enabled, and
NRFJPROG_read_device_info

• Editorial changes

April 2017 1.3 Updated to match nRF5x Command Line Tools v9.4.0:

• Installing the nRF Command Line Tools on page 6: Added
guidance for installing SW on Linux and OS X

• nRF Command Line Tools file structure on page 6: Added a new
family, UNKNOWN, for automatic detection of device family

• nrfjprog return codes on page 20: Added a new possible return
value: RecoverFailed

• nrfjprog commands on page 13: Added --fast modifier for
--verify operations for devices of the nRF52 family to speed up
programming verification times

• DLL functions in nrfjprogdll.h on page 26: Added DLL
functions NRFJPROG_disconnect_from_device() and
NRFJPROG_read_device_family()

4397_662 v1.4 iii

Revision history

Date Version Description

January 2017 1.2 Updated to match nRF5x Command Line Tools v9.3.1:

• Updates in the following nrfjprog commands on page 13:
--eraseall, --qspieraseall, --program
<hex_file> [-- sectorerase | --chiperase | --
sectoranduicrerase], --readuicr <path>, --
readcode <path>, and --readram <path>

• New nrfjprog command: --readqspi
• New exit codes in nrfjprog return codes on page 20: 29, 61, 70, 71,

72, 73, 104
• Functions added to DLL functions in nrfjprogdll.h on page

26: NRFJPROG_is_dll_open, NRFJPROG_step,
NRFJPROG_read_ram_sections_count,
NRFJPROG_read_ram_sections_size,
NRFJPROG_read_ram_sections_power_status,
NRFJPROG_is_rtt_started,
NRFJPROG_rtt_is_control_block_found,
NRFJPROG_is_qspi_init

December
2016

1.1 • Updated to match nRF5x Command Line Tools v9.2.0
• Editorial changes

July 2016 1.0 First release, based on nRF5x Command Line Tools v9.0.0

Previous versions
PDF files for relevant previous versions are available here:

• nRF5x Command Line Tools v1.3 (corresponds to nRF Command Line Tools v9.4.0)
• nRF5x Command Line Tools v1.2 (corresponds to nRF5x Command Line Tools v9.3.1)
• nRF5x Command Line Tools v1.1 (corresponds to nRF5x Command Line Tools v9.2.0)
• nRF5x Command Line Tools v1.0 (corresponds to nRF5x Command Line Tools v9.0.0)

4397_662 v1.4 iv

https://infocenter.nordicsemi.com/pdf/nRF5x_Command_Line_Tools_v1.3.pdf
https://infocenter.nordicsemi.com/pdf/nRF5x_Command_Line_Tools_v1.2.pdf
https://infocenter.nordicsemi.com/pdf/nRF5x_Command_Line_Tools_v1.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF5x_Command_Line_Tools_v1.0.pdf

1 Introduction

The nRF Command Line Tools are used for developing, programming, and debugging of Nordic
Semiconductor's SoCs (System on Chip).

The nRF Command Line Tools consist of the following components:

• nrfjprog executable: The nrfjprog executable is a command line tool for programming Nordic
Semiconductor SoCs through SEGGER J-Link programmers and debuggers.

• mergehex executable: The mergehex executable is a command line utility that enables you to
combine several HEX files into a single file.

• nrfjprog DLL: The nrfjprog DLL is a Dynamic-Link Library that exports functions for programming and
controlling Nordic Semiconductor SoCs. It lets developers create their own development tools for
Nordic Semiconductor SoCs using the DLL's API.

• SEGGER J-Link software and documentation pack: Included in the Windows installer. For Linux and
macOS, the SEGGER J-Link software and documentation pack must be installed separately.

The nRF Command Line Tools are available for the following operating systems:

• Windows 64- and 32-bit
• Linux 64- and 32-bit
• macOS

The nrfjprog utility is developed for use together with SEGGER debuggers, so the SEGGER software
must also be installed. You should install the SEGGER version provided with the nRF Command Line Tools
package, because this is the version that has been tested and verified to work. Using other versions
might also work, but keep in mind that there might be major changes that could break compatibility.
The SEGGER software is included in the Windows installer, but must be installed manually for Linux and
macOS. The SEGGER software is not documented here.

4397_662 v1.4 5

2 Installing the nRF Command Line
Tools

You can install the nRF Command Line Tools on Windows, Linux (64-bit and 32-bit), and macOS.

When installing on macOS or Linux, the SEGGER software must be installed in its default location, or the
shared library must be placed so that dlopen() can find it. The default location is:

• On macOS: /Applications/SEGGER/JLink
• On Linux: /opt/SEGGER/JLink

The SEGGER software can be installed by downloading and running the installer from SEGGER Software.

When installing the nRF Command Line Tools on Windows, SEGGER software is automatically installed in
addition to the tools.

Complete the following steps to install the nRF Command Line Tools:

1. Download the nRF Command Line Tools.
2. Run the installer for your operating system.

After running the installer, the nRF Command Line Tools are ready for use. By default, they are installed in
the following directories:

• On Windows (64-bit): C:/Program Files/Nordic Semiconductor/nrf-command-
line-tools/bin/

• On Windows (32-bit): C:/Program Files (x86)/Nordic Semiconductor/nrf-
command-line-tools/bin/

• On Linux: /opt/
• On macOS: /Applications/Nordic Semiconductor/

2.1 nRF Command Line Tools file structure
The file structure of the nRF Command Line Tools differs slightly depending on the operating system.

2.1.1 Windows file structure
By default, the Windows installer creates the following folder structure under C:/Program Files/
Nordic Semiconductor/nrf-command-line-tools/bin/.

File Description

docs Folder for documentation

-- mergehex_release_notes.txt Release notes for mergehex

-- nrfjprog_release_notes.txt Release notes for nRF Command Line Tools

headers Folder for header files

-- DllCommonDefinitions.h Header file for common definitions used in the DLL

-- highlevelnrfjprogdll.h Header file for the high-level DLL

4397_662 v1.4 6

https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.nordicsemi.com/Software-and-Tools/Development-Tools/nRF-Command-Line-Tools/Download#infotabs

Installing the nRF Command Line Tools

File Description

-- nrfjprogdll.h Header file for the common nrfjprog DLL (use the
family-specific header file for more information)

-- jlinkarm_nrf51_nrfjprogdll.h Header file for the nRF51 nrfjprog DLL

-- jlinkarm_nrf52_nrfjprogdll.h Header file for the nRF52 nrfjprog DLL

-- jlinkarm_nrf53_nrfjprogdll.h Header file for the nRF53 nrfjprog DLL

-- jlinkarm_nrf91_nrfjprogdll.h Header file for the nRF91 nrfjprog DLL

-- jlinkarm_unknown_nrfjprogdll.h Header file for the unknown family nrfjprog DLL

-- nrfjprog.h Header file for the nrfjprog executable

-- mergehex.h Header file for the mergehex executable

-- nrfdfu.h Header file for the DFU DLL

nrfjprog.exe nrfjprog executable

mergehex.exe mergehex executable

nrfjprog.ini Initialization file for the nrfjprog executable

nrfjprog.dll Top-level DLL

nrfjprog.lib Linking library for top-level DLL

QspiDefault.ini QSPI-connected external memory configuration file

jlinkarm_nrf51_nrfjprog.dll DLL for nRF51

jlinkarm_nrf51_nrfjprog.lib Linking library for nRF51 DLL

jlinkarm_nrf52_nrfjprog.dll DLL for nRF52

jlinkarm_nrf52_nrfjprog.lib Linking library for nRF52 DLL

jlinkarm_nrf53_nrfjprog.dll DLL for nRF53

jlinkarm_nrf53_nrfjprog.lib Linking library for nRF53 DLL

jlinkarm_nrf91_nrfjprog.dll DLL for nRF91

jlinkarm_nrf91_nrfjprog.lib Linking library for nRF91 DLL

jlinkarm_unknown_nrfjprog.dll DLL for automatic family detection

jlinkarm_unknown_nrfjprog.lib Linking library for automatic family detection DLL

2.1.2 Linux file structure
By default, the Linux installer creates the following folder structure under /opt/.

File Description

mergehex mergehex executable delivery

-- mergehex mergehex executable

-- mergehex_release_notes.txt Release notes for mergehex

-- mergehex.h Header file for the mergehex
executable

4397_662 v1.4 7

Installing the nRF Command Line Tools

File Description

nrfjprog nrfjprog executable delivery

-- DllCommonDefinitions.h Header file for common
definitions used in the DLL

-- libjlinkarm_nrf51_nrfjprogdll.so Symbolic link to Major Version
nRF51 DLL

-- libjlinkarm_nrf51_nrfjprogdll.so.10 Symbolic link to Patch Version
nRF51 DLL

-- libjlinkarm_nrf51_nrfjprogdll.so.10.11.1 DLL for nRF51

-- libjlinkarm_nrf52_nrfjprogdll.so Symbolic link to Major Version
nRF52 DLL

-- libjlinkarm_nrf52_nrfjprogdll.so.10 Symbolic link to Patch Version
nRF52 DLL

-- libjlinkarm_nrf52_nrfjprogdll.so.10.11.1 DLL for nRF52

-- libjlinkarm_nrf53_nrfjprogdll.so Symbolic link to Major Version
nRF53 DLL

-- libjlinkarm_nrf53_nrfjprogdll.so.10 Symbolic link to Patch Version
nRF53 DLL

-- libjlinkarm_nrf53_nrfjprogdll.so.10.11.1 DLL for nRF53

-- libjlinkarm_nrf91_nrfjprogdll.so Symbolic link to Major Version
nRF91 DLL

-- libjlinkarm_nrf91_nrfjprogdll.so.10 Symbolic link to Patch Version
nRF91 DLL

-- libjlinkarm_nrf91_nrfjprogdll.so.10.11.1 DLL for nRF91

-- libnrfjprogdll.so Symbolic link to Major Version
nRFxx DLL

-- libnrfjprogdll.so.10 Symbolic link to Patch Version
nRFxx DLL

-- libnrfjprogdll.so.10.11.1 DLL for nRFxx

-- libjlinkarm_unknown_nrfjprogdll.so Symbolic link to Major Version
unknown family DLL

-- libjlinkarm_unknown_nrfjprogdll.so.10 Symbolic link to Patch Version
unknown family DLL

-- libjlinkarm_unknown_nrfjprogdll.so.10.11.1 DLL for automatic family
detection

-- nrf51_nrfjprogdll.h Header file for the nRF51 nrfjprog
DLL

-- nrf52_nrfjprogdll.h Header file for the nRF52 nrfjprog
DLL

-- nrf53_nrfjprogdll.h Header file for the nRF53 nrfjprog
DLL

4397_662 v1.4 8

Installing the nRF Command Line Tools

File Description

-- nrf91_nrfjprogdll.h Header file for the nRF91 nrfjprog
DLL

-- unknown_nrfjprogdll.h Header file for the unknown
family nrfjprog DLL

-- nrfjprogdll.h Header file for the common
nrfjprog DLL (use the family-
specific header file for more
information)

-- nrfjprog.h Header file for the nrfjprog
executable

-- nrfjprog nrfjprog executable

-- nrfjprog.ini Initialization file for the
nrfjprog executable

-- QspiDefault.ini QSPI-connected external memory
configuration file

-- nrfjprog_release_notes.txt Release notes for the nrfjprog
executable

2.1.3 MacOS file structure
By default, the macOS installer creates the following folder structure under /Applications/Nordic
Semiconductor/.

File Description

mergehex mergehex executable
delivery

-- mergehex mergehex executable

-- mergehex_release_notes.txt Release notes for mergehex

-- mergehex.h Header file for the mergehex
executable

nrfjprog nrfjprog executable
delivery

-- DllCommonDefinitions.h Header file for common
definitions used in the DLL

-- libjlinkarm_nrf51_nrfjprogdll.dylib Symbolic link to Major Version
nRF51 DLL

-- libjlinkarm_nrf51_nrfjprogdll.10.dylib Symbolic link to Patch Version
nRF51 DLL

-- libjlinkarm_nrf51_nrfjprogdll.10.11.1.dylib DLL for nRF51

-- libjlinkarm_nrf52_nrfjprogdll.dylib Symbolic link to Major Version
nRF52 DLL

4397_662 v1.4 9

Installing the nRF Command Line Tools

File Description

-- libjlinkarm_nrf52_nrfjprogdll.10.dylib Symbolic link to Patch Version
nRF52 DLL

-- libjlinkarm_nrf52_nrfjprogdll.10.11.1.dylib DLL for nRF52

-- libjlinkarm_nrf53_nrfjprogdll.dylib Symbolic link to Major Version
nRF53 DLL

-- libjlinkarm_nrf53_nrfjprogdll.10.dylib Symbolic link to Patch Version
nRF53 DLL

-- libjlinkarm_nrf53_nrfjprogdll.10.11.1.dylib DLL for nRF53

-- libjlinkarm_nrf91_nrfjprogdll.dylib Symbolic link to Major Version
nRF91 DLL

-- libjlinkarm_nrf91_nrfjprogdll.10.dylib Symbolic link to Patch Version
nRF52 DLL

-- libjlinkarm_nrf91_nrfjprogdll.10.11.1.dylib DLL for nRF91

-- libnrfjprogdll.dylib Symbolic link to Major Version
nRFxx DLL

-- libnrfjprogdll.10.dylib Symbolic link to Patch Version
nRFxx DLL

-- libnrfjprogdll.10.11.1.dylib DLL for nRFxx

-- libjlinkarm_unknown_nrfjprogdll.dylib Symbolic link to Major Version
unknown family DLL

-- libjlinkarm_unknown_nrfjprogdll.10.dylib Symbolic link to Patch Version
unknown family DLL

-- libjlinkarm_unknown_nrfjprogdll.10.11.1.dylib DLL for automatic family
detection

-- nrf51_nrfjprogdll.h Header file for the nRF51
nrfjprog DLL

-- nrf52_nrfjprogdll.h Header file for the nRF52
nrfjprog DLL

-- nrf53_nrfjprogdll.h Header file for the nRF53
nrfjprog DLL

-- nrf91_nrfjprogdll.h Header file for the nRF91
nrfjprog DLL

-- nrfjprog nrfjprog executable

-- nrfjprog.h Header file for the nrfjprog
executable

-- nrfjprog.ini Initialization file for the
nrfjprog executable

-- nrfjprogdll.h Header file for the common
nrfjprog DLL (use the family-
specific header file for more
information)

4397_662 v1.4 10

Installing the nRF Command Line Tools

File Description

-- QspiDefault.ini QSPI-connected external
memory configuration file

-- nrfjprog_release_notes.txt Release notes for the
nrfjprog executable

4397_662 v1.4 11

3 Merging files with mergehex

To combine up to three HEX files into a single file, use the mergehex executable.

Since the Nordic Semiconductor SoftDevices come as precompiled HEX files, you will have at least two HEX
files to program into an nRF5 SoC when adding your own application. mergehex allows you to combine
the HEX files into a single file before programming it onto the SoC.

The mergehex utility can make developing more efficient when flashing and testing applications. In
production programming, it can significantly reduce the complexity of programming the firmware to
Nordic Semiconductor SoCs - especially when there is a bootloader, SoftDevice, and application.

The following table shows the commands that are available for mergehex.

Shortcut Command Description

-h --help Displays the help.

-v --version Displays the mergehex version.

-q --quiet Reduces the stdout text info. Must be combined with
another command.

-m --merge <hex.file>
<hex.file> [<hex.file>]

HEX files to be merged. Must be combined with the --
output command.

-o --output <hex.file> HEX file with the result of the merge. Must be
combined with the --merge command.

Table 1: mergehex commands

To see all the return codes that the mergehex executable can return, refer to the mergehex.h file that
is included in the nRF Command Line Tools installation.

The following example shows how to use mergehex to merge three HEX files, file1.hex,
file2.hex, file3.hex, into one, output_file.hex:

mergehex -m file1.hex file2.hex file3.hex -o output_file.hex

4397_662 v1.4 12

4 Programming SoCs with nrfjprog

To program Nordic Semiconductor SoCs through SEGGER J-Link programmers and debuggers, use the
nrfjprog executable.

Important: This version of the nrfjprog executable has been developed and tested for the
bundled SEGGER software. It will most likely work with other versions of the SEGGER software, but
keep in mind that there could be major changes that break the compatibility.

See nrfjprog commands on page 13 for an overview of all available nrfjprog commands, and
nrfjprog return codes on page 20 for a list of possible return codes.

To set up a standard configuration for using the nrfjprog utility, use the initialization file
nrfjprog.ini (as listed in the nRF Command Line Tools file structure on page 6). The currently
supported configuration parameters are Family and Clockspeed. For example, by setting Family
= NRF51, the family NRF51 will be chosen when calling nrjprog without providing the --family
option. By default, if called without the --family option, nrfjprog uses UNKNOWN and detects the
target family automatically.

The following example shows how to use nrfjprog to erase all available user flash (including UICR) and
program the file file.hex to an nRF52 SoC:

nrfjprog -f NRF52 --program file.hex –-chiperase

4.1 nrfjprog commands
nrfjprog offers a variety of commands for programming Nordic Semiconductor SoCs with different
options and executing other operations on the SoCs.

There are shorthand forms for the most commonly used commands. Some commands will only function
together with other commands.

Shorthand
form

Command Description

-q --quiet Reduces the stdout info. Must be combined with
another command.

-h --help Displays this help.

-v --version Displays the nrfjprog and DLL versions.

--log [<path>] Enables logging. The default output file is log.log.
Specify a file path to modify the output file name
and/or location. If the parent folder of the specified
file does not exist, nrfjprog attempts to create
it. Logger output is appended to the file. Must be
combined with another command.

--jdll <file> Specifies the file path of the JLinkARM DLL that should
be used. If this command is omitted, nrfjprog
searches for the latest version of SEGGER's JLinkARM
DLL. Must be combined with another command.

4397_662 v1.4 13

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--ini <file> Specifies the file path of the nrfjprog settings
file that should be used instead of the default
nrfjprog.ini file in the installation folder. Must
be combined with another command.

--qspiini <file> Specifies the file path of the QSPI settings file
that should be used instead of the default
QspiDefault.ini file in the installation folder.
Must be combined with either --memrd, --memwr,
--program, --verify, --erasepage, or --
qspieraseall.

Note the following limitation:

• The operation is available only for devices with a
QSPI peripheral.

--qspicustominit Deprecated. This operation does nothing.

-i --ids Displays the serial numbers of all the debuggers
connected to the computer.

--com Displays a list of the serial ports associated with all
connected debuggers. If combined with --snr, this
option displays all serial ports associated with the
given debugger.

--deviceversion Displays the type of the device that is connected.
If combined with --snr, this option displays the
type of the device that is associated with the given
debugger.

-f --family <family> Selects the device family for the operation. Valid
argument options are NRF51, NRF52, NRF53, NRF91,
and UNKNOWN. If UNKNOWN family is given, an
automatic detection of the device family is performed.
Note that providing the actual family is faster than
performing the automatic family detection. If the --
family option is not given, the default is taken from
nrfjprog.ini. Must be combined with another
command.

-s --snr <serial_number> Selects the debugger with the given serial number
among all debuggers connected to the computer
for the operation. Must be combined with another
command.

-c --clockspeed <speed> Sets the debugger SWD clock speed in kHz resolution
for the operation. The valid clock speed arguments go
from 125 kHz to 50000 kHz. If the given clock speed
is above the maximum clock speed supported by the
emulator, its maximum will be used instead. If the
--clockspeed option is not given, the default is
taken from nrfjprog.ini. Must be combined with
another command.

4397_662 v1.4 14

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--recover Erases all user flash memory and disables the
readback protection mechanism if enabled.

--rbp <level> Enables the readback protection mechanism. Valid
argument options are CR0 and ALL.

Note the following limitation:

• The CR0 argument option is valid only for nRF51
devices.

Note: After an --rbp operation is performed,
the available operations are reduced. For
nRF51 devices, and if argument option ALL is
used, --pinreset will not work on certain
older devices. For nRF52 devices, only --
pinreset or --recover operations are
available after --rbp.

--pinresetenable Enables pin reset by using the UICR PSELRESET
registers.

Note the following limitation:

• The operation is available only for nRF52 devices.

-p --pinreset Performs a pin reset. Core will run after the operation.

-r --reset Performs a soft reset by setting the SysResetReq
bit of the AIRCR register of the core. The core will
run after the operation. Can be combined with the
--program operation. If combined with the --
program operation, the reset will occur after the
flashing has occurred to start execution.

-d --debugreset Performs a soft reset by use of the CTRL-AP. The core
will run after the operation. Can be combined with
the --program operation. If combined with the --
program operation, the debug reset will occur after
the flashing has occurred to start execution.

Note the following limitations:

• For nRF51 devices, the operation is not available.
• For nRF52 Engineering A devices, the operation is

not available.

-e --eraseall Erases all user available program flash memory
and the UICR page. Can be combined with the --
qspieraseall operation.

Note the following limitation:

• For nRF51 devices with a pre-programmed
SoftDevice, only the user available code flash and
UICR will be erased.

4397_662 v1.4 15

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--qspieraseall Erases all flash of the external memory device with
help of the QSPI peripheral. Note that depending
on the external memory device's erase speed,
the operation might take several minutes. Can be
combined with the --eraseall operation.

Note the following limitations:

• For nRF51 devices, the operation is not available.
• For nRF52 devices, the operation is available

only for devices with a QSPI peripheral that are
connected to an external memory device. To
determine if an external memory device is present,
nrfjprog checks the MemSize parameter from
the QspiDefault.ini file or from the QSPI
configuration ini file that is given with the --
qspiini option.

• For nRF91 devices, the operation is not available.

--eraseuicr Erases the UICR page.

Note the following limitations:

• For nRF51 devices, the operation is only available if
there is a pre-programmed SoftDevice.

• For nRF91 devices, the operation is not available.
Use --eraseall instead.

--erasepage <start[-
end]>

Erases the flash pages starting at the given start
address and ending at the given end address (not
included in the erase). If no end address is given,
only one flash page will be erased. If your device is
equipped with a QSPI peripheral, the pages to erase
belong to the XIP region of the device, and an external
memory device is present, this command erases 4
kB pages from the external memory device. The first
address of the region is considered as address 0 of the
external memory device. To determine if an external
memory device is present, nrfjprog checks the
MemSize parameter from the QspiDefault.ini
file or from the QSPI configuration ini file that is given
with the --qspiini option.

Note the following limitation:

• For nRF51 devices, the page will not be erased if it
belongs to region 0.

4397_662 v1.4 16

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--program <hex_file>
[--sectorerase |
--chiperase | --
sectoranduicrerase][--
qspisectorerase | --
qspichiperase]

Programs the specified HEX file into the device. If the
target area to program is not erased, the --program
operation will fail, unless an erase option is given.
Valid erase operations for the internal flash memory
are --sectorerase, --sectoranduicrerase,
and --chiperase.

If --chiperase is given, all the available user non-
volatile memory, including UICR, will be erased before
programming. If --sectorerase is given, only
the targeted non-volatile memory pages, excluding
UICR, is erased. If --sectoranduicrerase is
given, only the targeted non-volatile memory pages,
including UICR, will be erased.

Note that the --sectoranduicrerase
and --sectorerase operations normally
take a significantly longer time compared to --
chiperase, so use them with caution.

If your device is equipped with a QSPI peripheral
and an external memory device is present, data
targeting the XIP region will be written to the external
memory device. The first address of the region is
considered as address 0 of the external memory
device. To determine if an external memory device
is present, nrfjprog checks the MemSize parameter
from the QspiDefault.ini file or from the
QSPI configuration ini file that is given with the --
qspiini option.

If the target area to program is not erased, the --
program operation will fail, unless an erase option
is given. Valid erase operations for the external
memory device are --qspichiperase and --
qspisectorerase.

If --qspichiperase is given, the external memory
device will be erased. If the --qspisectorerase
is given, only 4 kB pages from the targeted external
memory device will be erased. Note that the --
qspichiperase operation may take several
minutes. The --program command can be
combined with the --verify option. It can also
be combined with either the --reset or the --
debugreset operations. The reset will occur after
the flashing operation to start execution.

Note the following limitations:

• For nRF51 devices, the --
sectoranduicrerase operation is not
available.

4397_662 v1.4 17

Programming SoCs with nrfjprog

Shorthand
form

Command Description

• For nRF51 devices, if the hex_file provided
contains sectors belonging to region 0, the --
program operation will fail.

• The --qspisectorerase and --
qspichiperase operations are available
only for devices that are equipped with a
QSPI peripheral and have an external memory
connected. To determine if an external memory
device is present, nrfjprog checks the MemSize
parameter from the QspiDefault.ini file or
from the QSPI configuration ini file that is given
with the --qspiini option.

--memwr <addr> --val
<val> [--verify]

Writes to the provided address in memory with
help of the NVM Controller or, if your device is
equipped with a QSPI peripheral and the address
to write belongs to the XIP region, with the help
of the QSPI peripheral to an external memory
device. To determine if an external memory device
is present, nrfjprog checks the MemSize parameter
from the QspiDefault.ini file or from the
QSPI configuration ini file that is given with the --
qspiini option. The first address of the region
is considered as address 0 of the external memory
device. If the target address is flash (either internal or
in the external memory device) and not erased, the
operation will fail. This command can be combined
with the --verify operation.

--ramwr <addr> --val
<val> [--verify]

Writes to memory without help of the NVM Controller
to the provided address. Can be combined with the
--verify operation.

4397_662 v1.4 18

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--verify [<hex_file>][--
fast]

Compares the provided hex_file contents with
the contents in the device code flash, RAM, UICR,
and XIP regions (for devices that are equipped with
a QSPI peripheral and connected to an external
memory device) and fails if there is a mismatch.
To determine if an external memory device is
present, nrfjprog checks the MemSize parameter
from the QspiDefault.ini file or from the
QSPI configuration ini file that is given with the --
qspiini option. If the optional --fast parameter
is given, nrfjprog will calculate a hash of the flash
target area using a SHA-256 algorithm and compare
it to the expected hash instead of reading back the
actual contents of the device flash in order to speed
the operation. This command can be combined
with the --program, --memwr, and --ramwr
operations if provided without the hex_file
parameter.

Note the following limitation:

• The --fast verifying option is available only for
nRF52 devices.

--memrd <addr> [--w
<width>] [--n <n>]

Reads n bytes from the provided address. If width
is not given, 32-bit words are read if addr is word
aligned, 16-bit words if addr is half word aligned,
and 8-bit words otherwise. If n is not given, one
word of size width is read. The address and n must
be aligned to the width parameter. The maximum
number of bytes that can be read is 1 MB. The width
must be 8, 16, or 32. If your device is equipped
with a QSPI peripheral and the addresses to read
belong to the XIP region, the QSPI peripheral is
used to read from the external memory device if
present. To determine if an external memory device
is present, nrfjprog checks the MemSize parameter
from the QspiDefault.ini file or from the
QSPI configuration ini file that is given with the --
qspiini option. The first address of the region
is considered as address 0 of the external memory
device.

Note the following limitation:

• A single --memrd instruction cannot be used to
read addresses from both the external memory
device and the nRF device.

--halt Halts the CPU core.

4397_662 v1.4 19

Programming SoCs with nrfjprog

Shorthand
form

Command Description

--run [--pc <pc_addr> --
sp <sp_addr>]

Starts the CPU. If --pc and --sp options are given,
the pc_addr and sp_addr are used as initial PC
and stack pointer. For pc_addr to be valid, its last
bit must be one. For sp_addr to be valid, it must be
word aligned.

--readuicr <path> Reads the device UICR and stores it in the given file
path. Can be combined with --readcode, --
readram, and --readqspi. If combined, only one
instruction can provide a path.

--readcode <path> Reads the device flash and stores it in the given file
path. Can be combined with --readuicr, --
readram, and --readqspi. If combined, only one
instruction can provide a path.

--readram <path> Reads the device RAM and stores it in the given file
path. Can be combined with --readuicr, --
readcode, and --readqspi. If combined, only
one instruction can provide a path.

--readqspi <path> Reads the QSPI-connected external memory and
stores it in the given file path. Can be combined with
--readuicr, --readcode, and --readram. If
combined, only one instruction can provide a path.

--readregs Reads the CPU registers.

--coprocessor
<coprocessor>

Connects the device to the selected coprocessor. Valid
arguments are CP_APPLICATION, CP_NETWORK, and
CP_MODEM. If --coprocessor option is not used,
CP_APPLICATION is used as target. Must be combined
with another command.

Note the following limitations:

• For nRF51 devices, the operation is not available.
• For nRF52 devices, the operation is not available.

Table 2: nrfjprog commands

4.2 nrfjprog return codes
nrfjprog returns the exit code 0 if the requested operation was completed successfully. Otherwise, an
error code is returned.

Exit code Definition Description

0 Success Requested operation (operations) were
successfully completed.

1 NrfjprogError An error condition that should not occur
has happened.

4397_662 v1.4 20

Programming SoCs with nrfjprog

Exit code Definition Description

2 NrfjprogOutdatedError nrfjprog version is too old for the
device.

3 MemoryAllocationError Memory allocation for nrfjprog failed.

11 InvalidArgumentError Invalid arguments passed to the
application.

12 InsufficientArgumentsError Needed arguments not passed to the
application.

13 IncompatibleArgumentsError Incompatible arguments passed to the
application.

14 DuplicatedArgumentsError The same argument has been passed
twice.

15 NoOperationError The arguments passed do not perform a
valid operation.

16 UnavailableOperationBecauseProtectionError The operation attempted cannot be
performed because either the main-ap or
the ctrl-ap is not available.

17 UnavailableOperationInFamilyError The operation attempted cannot be
performed in the device because the
feature is lacking in the device family.

18 WrongFamilyForDeviceError The --family option given with
the command (or the default from
nrfjprog.ini) does not match the
device connected.

19 UnavailableOperationBecauseMpuConfiguration For nRF51, --eraseuicr is unavailable
unless the device came with an ANT
SoftDevice programmed at Nordic factory.

20 NrfjprogDllNotFoundError Unable to find nrfjprog.dll in the
installation folder. Reinstall nrfjprog.

21 NrfjprogDllLoadFailedError Failed to load nrfjprog.dll.

22 NrfjprogDllFunctionLoadFailedError Failed to load the functions from
nrfjprog.dll.

23 NrfjprogDllNotImplementedError DLL does not implement this function for
your device.

24 NrfjprogIniSyntaxError Syntax error in nrfjprog.ini file.

25 NrfjprogIniNotFoundError Unable to find nrfjprog.ini in the
installation folder. Reinstall nrfjprog.

26 NrfjprogIniCannotBeOpenedError Opening the nrfjprog.ini file for
reading failed.

27 NrfjprogIniFamilyMissingError Family parameter cannot be parsed from
ini file. Line might be deleted or invalid
format.

4397_662 v1.4 21

Programming SoCs with nrfjprog

Exit code Definition Description

28 NrfjprogIniClockspeedMissingError Clockspeed parameter cannot be parsed
from ini file. Line might be deleted or
invalid format.

30 JLinkARMDllNotFoundError Unable to find install path for JLink
software.

31 JLinkARMDllInvalidError DLL found does not seem a valid DLL.

32 JLinkARMDllFailedToOpenError DLL could not be opened.

33 JLinkARMDllError DLL reported error.

34 JLinkARMDllTooOldError DLL is too old for functionality. Install a
newer version of JLinkARM.dll.

37 UnavailableOperationBecauseTrustZone The address area attempted to be
accessed is unavailable because of the
TrustZone setup.

38 UnavailableOperationBecauseBPROT The address area attempted to be
accessed is unavailable because of the
memory block protection setup (MPU,
BPROT, ACL, or SPU).

40 InvalidSerialNumberError Serial number provided is not among those
connected.

41 NoDebuggersError There are no debuggers connected to the
PC.

42 NotPossibleToConnectError Not possible to connect to the device.

43 LowVoltageError Low voltage detected at target device.

51 FileNotFoundError Unable to find the given file.

52 InvalidHexFileError File specified does not seem a valid HEX
file.

53 FicrReadError FICR read failed.

54 WrongArgumentError One of the arguments is wrong. Path does
not exist, memory access is not aligned.

55 VerifyError The write verify operation failed.

56 NoWritePermissionError Unable to create file in the current working
directory.

57 NVMCOperationError The flash operation in the device failed.

58 FlashNotErasedError A program operation failed because the
area to write was not erased.

59 RamIsOffError The RAM area to read or write is
unpowered.

60 NoReadPermissionError Unable to open file for read.

61 NoExternalMemoryConfiguredError A QSPI operation is attempted without an
external memory configured.

4397_662 v1.4 22

Programming SoCs with nrfjprog

Exit code Definition Description

62 RecoverFailed --recover operation failed for an
unknown reason. Check if the proper
family has been provided.

63 InternalError An unexpected internal error occurred
and the operation failed for an unknown
reason. Check if the proper family has
been provided.

70 NrfjprogQspiIniNotFoundError Unable to find QSPI ini file given as default
or given with option --qspiini.

71 NrfjprogQspiIniCannotBeOpenedError Opening the QSPI ini file for read failed.

72 NrfjprogQspiSyntaxError The QSPI ini file has a syntax error.

73 NrfjprogQspiIniParsingError The QSPI ini file parsed has one or more
missing keys.

74 NrfjprogQspiIniCustomMissingError The QSPI ini file parsed has no custom
instructions specified, but option --
qspicustominit was given.

100 FicrOperationWarning FICR operation. It is important to be certain
of what you do.

101 UnalignedPageEraseWarning Address provided with page erase is not
aligned to first address of page.

102 NoLogWarning No log is possible because the program
has no write permission in the current
directory.

103 UicrWriteOperationWithoutEraseWarning A UICR write operation is requested but
there has been no UICR erase.

104 VeryLongOperationWarning An operation that might take several
minutes is being executed. Please wait.

110 LogWritePermissionWarning Logging is not possible because the log file
could not be opened for writing.

Table 3: nrfjprog return codes

4397_662 v1.4 23

5 nrfjprog DLL

The nrfjprog DLL is a Dynamic-Link Library that exports functions for programming and controlling Nordic
Semiconductor SoCs. It lets developers create their own development tools for Nordic Semiconductor
SoCs using the DLL's API.

The nrfjprog DLL comes as a 32- and a 64-bit Dynamic-Link Library on Windows. For Linux, it has been
compiled as a shared library for both 32- and 64-bit. The macOS variant is delivered only as a 64-bit library.
The DLL exports functions for programming and controlling SoCs through SEGGER J-Link programmers and
debuggers.

Important: This version of the nrfjprog DLL has been developed and tested for the bundled
SEGGER software. It will most likely work with other versions of the SEGGER software, but keep in
mind that there could be major changes that break compatibility.

5.1 Loading the DLL
To use the nrfjprog DLL from a C/C++ application, you must load it first.

There are two methods to load the DLL: linking against the DLL when building your application or loading
the DLL at run-time.

5.1.1 Linking against the DLL
The easiest way to load the DLL is to link against the DLL when building your application. In this way, your
application will automatically load the DLL when it starts.

The following code snippets describe how to load and call one function of the nrfjprog DLL. Remember
that error checking should be done in each step of the code, but for simplicity this is not illustrated in the
following code snippets.

1. Link your application against the DLL:

• On Windows: nrfjprogdll.lib
• On Linux: libnrfjprogdll.so
• On macOS: libnrfjprogdll.dylib

See the documentation of your toolchain for how to link against libraries.
2. Include the nrfjprog header file:

#include "nrfjprogdll.h"

3. Call the function, for example:

bool halted;

NRFJPROG_is_halted(&halted);

5.1.2 Loading the DLL at run-time
You can manually load the nrfjprog DLL when the application is running.

This method provides more flexibility than build-time loading by allowing you to load a limited set of DLL
functions. In addition, it allows more complex mechanisms for finding the library file. Manual loading also
prevents the DLL from “polluting” the global name space with function names.

4397_662 v1.4 24

nrfjprog DLL

The following platform-specific code snippets describe how to load and call one function of the nrfjprog
DLL. Remember that error checking should be done in each step of the code, but for simplicity this is not
illustrated in the following code snippets.

1. Include the necessary header files:

• On Windows:

#include "nrfjprogdll.h"

#include <windows.h>

• On Linux or macOS:

#include "nrfjprogdll.h"

#include <dlfcn.h>

2. Load the DLL:

• On Windows:

HMODULE dll = LoadLibrary("nrfjprog.dll");

• On Linux:

void * dll = dlopen("libnrfjprogdll.so", RTLD_LAZY);

• On macOS:

void * dll = dlopen("libnrfjprogdll.dylib", RTLD_LAZY);

3. Declare a function pointer type to store the address of the DLL function:

typedef nrfjprogdll_err_t (*Dll_NRFJPROG_is_halted_t)(bool * is_device_halted);

4. Define a function pointer and load into it the DLL function address:

• On Windows:

Dll_NRFJPROG_is_halted_t NRFJPROG_is_halted =

 (Dll_NRFJPROG_is_halted_t)GetProcAddress(dll, "NRFJPROG_is_halted");

• On Linux or macOS:

Dll_NRFJPROG_is_halted_t NRFJPROG_is_halted =

 (Dll_NRFJPROG_is_halted_t)dlsym(dll, "NRFJPROG_is_halted");

5. Call the function, for example:

bool halted;

NRFJPROG_is_halted(&halted);

6. Free the DLL:

• On Windows:

FreeLibrary(dll);

• On Linux or macOS:

dlclose(dll);

4397_662 v1.4 25

nrfjprog DLL

5.2 Calling DLL functions
The nrfjprog DLL functions must be called in a specific order.

This is the recommended sequence of calling the nrfjprog DLL functions:

1. NRFJPROG_open_dll()

2. Connect with or without specifying the serial number:

• NRFJPROG_connect_to_emu_with_snr()
• NRFJPROG_connect_to_emu_without_snr()

3. NRFJPROG_connect_to_device()

4. NRFJPROG_halt()

5. Other desired functions such as NRFJPROG_read() or NRFJPROG_write()
6. NRFJPROG_close()

5.3 DLL functions in nrfjprogdll.h
For a complete reference of the nrfjprog DLL and a description of the API, refer to the nrfjprogdll.h
header file provided as part of the nRF Command Line Tools installation.

The following table lists all DLL functions of the nrfjprog DLL. The file DllCommonDefinitions.h
provided with the installation defines all return codes of the DLL functions as well as other necessary type
definitions.

Function Description

NRFJPROG_dll_version Returns the JLinkARM.dll version.

NRFJPROG_is_dll_open Checks if the JLinkARM DLL is open.

NRFJPROG_open_dll Opens the JLinkARM DLL and sets the log
callback. Prepares the DLL for work with a
specific family.

NRFJPROG_close_dll Closes and frees the JLinkARM DLL.

NRFJPROG_enum_emu_com Enumerates all serial ports connected to a
given SEGGER debug probe.

NRFJPROG_enum_emu_snr Enumerates the serial numbers of connected
USB SEGGER J-Link emulators.

NRFJPROG_is_connected_to_emu Checks if the emulator has an established
connection with a SEGGER emulator/
debugger.

NRFJPROG_connect_to_emu_with_snr Connects to a given emulator/debugger.

NRFJPROG_connect_to_emu_without_snr Connects to an emulator/debugger.

NRFJPROG_reset_connected_emu Attempts to reset the connected J-Link OB.

NRFJPROG_replace_connected_emu_fw Replaces the firmware on the connected J-
Link debug probe.

4397_662 v1.4 26

nrfjprog DLL

Function Description

NRFJPROG_read_connected_emu_snr Reads the serial number of the connected
emulator.

NRFJPROG_read_connected_emu_fwstr Reads the firmware identification string of
the connected emulator.

NRFJPROG_disconnect_from_emu Disconnects from an emulator.

NRFJPROG_is_coprocessor_enabled Checks if the coprocessor is enabled.

NRFJPROG_enable_coprocessor Enables the coprocessor.

NRFJPROG_disable_coprocessor Disables the coprocessor.

NRFJPROG_select_coprocessor Selects which coprocessor to connect to.

NRFJPROG_recover Recovers the device.

NRFJPROG_is_connected_to_device Checks if the emulator has an established
connection with a SoC.

NRFJPROG_connect_to_device Connects to the SoC.

NRFJPROG_disconnect_from_device Disconnects from the SoC.

NRFJPROG_readback_protect Protects the SoC against read or debug.

NRFJPROG_readback_status Returns the status of the readback
protection.

NRFJPROG_is_eraseprotect_enabled Returns the status of the erase protection.

NRFJPROG_enable_eraseprotect Enables erase protection.

NRFJPROG_read_region_0_size_and_source Returns the region 0 size and source of
protection, if any.

NRFJPROG_debug_reset Executes a reset using the CTRL-AP.

NRFJPROG_sys_reset Executes a system reset request.

NRFJPROG_pin_reset Executes a pin reset.

NRFJPROG_disable_bprot Disables BPROT.

NRFJPROG_is_bprot_enabled Detects if memory block protection is
enabled.

NRFJPROG_erase_all Erases all flash.

NRFJPROG_erase_page Erases a page of code flash.

NRFJPROG_erase_uicr Erases UICR.

NRFJPROG_write_u32 Writes one uint32_t data at the given
address.

NRFJPROG_read_u32 Reads one uint32_t address.

NRFJPROG_write Writes data from the array starting at the
given address.

NRFJPROG_read Reads data_len bytes starting at address
addr.

4397_662 v1.4 27

nrfjprog DLL

Function Description

NRFJPROG_is_halted Checks if the SoC CPU is halted.

NRFJPROG_halt Halts the SoC CPU.

NRFJPROG_run Starts the SoC CPU with the given pc and sp.

NRFJPROG_go Starts the SoC CPU.

NRFJPROG_step Runs the device CPU for one instruction.

NRFJPROG_read_ram_sections_count Reads the number of RAM sections in the
device.

NRFJPROG_read_ram_sections_size Reads the size of the RAM sections in the
device in bytes.

NRFJPROG_read_ram_sections_power_status Reads the RAM section power status.

NRFJPROG_is_ram_powered Reads the RAM power status.

NRFJPROG_power_ram_all Powers up all RAM sections of the device.

NRFJPROG_unpower_ram_section Powers down a RAM section of the device.

NRFJPROG_read_cpu_register Reads a CPU register.

NRFJPROG_write_cpu_register Writes a CPU register.

NRFJPROG_read_device_version Reads the device version connected to the
device.

NRFJPROG_read_device_info Reads the version, name, memory, and
revision descriptors of the device connected
to the emulator.

NRFJPROG_read_device_family Reads the family of the device connected
to the emulator. Can only be called if
NRFJPROG_open_dll() was called with
UNKNOWN_FAMILY as family parameter.

NRFJPROG_read_debug_port_register Reads a debugger debug port register.

NRFJPROG_write_debug_port_register Writes a debugger debug port register.

NRFJPROG_read_access_port_register Reads a debugger access port register.

NRFJPROG_write_access_port_register Writes a debugger access port register.

NRFJPROG_is_rtt_started Checks if the RTT is started.

NRFJPROG_rtt_set_control_block_address Indicates to the DLL the location of the RTT
control block in the SoC memory.

NRFJPROG_rtt_start Starts RTT.

NRFJPROG_rtt_is_control_block_found Checks if an RTT control block has been
found.

NRFJPROG_rtt_stop Stops RTT.

NRFJPROG_rtt_read Reads from an RTT channel.

NRFJPROG_rtt_write Writes to an RTT channel.

NRFJPROG_rtt_read_channel_count Gets the number of RTT channels.

4397_662 v1.4 28

nrfjprog DLL

Function Description

NRFJPROG_rtt_read_channel_info Reads the info from one RTT channel.

NRFJPROG_is_qspi_init Checks if the QSPI peripheral is initialized.

NRFJPROG_qspi_init Initializes the QSPI peripheral.

NRFJPROG_qspi_uninit Uninitializes the QSPI peripheral.

NRFJPROG_qspi_read Reads from the external QSPI-connected
memory.

NRFJPROG_qspi_write Writes to the external QSPI-connected
memory.

NRFJPROG_qspi_erase Erases the external QSPI-connected memory.

NRFJPROG_qspi_custom Sends a custom instruction to the external
QSPI-connected memory.

Table 4: DLL functions in nrfjprogdll.h

4397_662 v1.4 29

Legal notices
By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may
change these terms and conditions at any time without notice.

Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and shall have no liability for the consequences of use
of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor’s
documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to
this document without notice.

Life support applications
Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from
such improper use or sale.

RoHS and REACH statement
Complete hazardous substance reports, material composition reports and latest version of Nordic's REACH
statement can be found on our website www.nordicsemi.com.

Trademarks
All trademarks, service marks, trade names, product names, and logos appearing in this documentation
are the property of their respective owners.

Copyright notice
© 2020 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited
without the prior written permission of the copyright holder.

4397_662 v1.4 30

https://www.nordicsemi.com

	Contents
	Revision history
	Introduction
	Installing the nRF Command Line Tools
	2.1 nRF Command Line Tools file structure
	2.1.1 Windows file structure
	2.1.2 Linux file structure
	2.1.3 MacOS file structure

	Merging files with mergehex
	Programming SoCs with nrfjprog
	4.1 nrfjprog commands
	4.2 nrfjprog return codes

	nrfjprog DLL
	5.1 Loading the DLL
	5.1.1 Linking against the DLL
	5.1.2 Loading the DLL at run-time

	5.2 Calling DLL functions
	5.3 DLL functions in nrfjprogdll.h

	Legal notices

