nRF52833 Revision 2

Errata v1.2

Contents

1	nRF52833 Revision 2 Errata	3
2	Revision history.	4
3	New and inherited anomalies.	6
	3.1 [20] RTC: Register values are invalid	. 7
	3.2 [36] CLOCK: Some registers are not reset when expected	
	3.3 [55] I2S: RXPTRUPD and TXPTRUPD events asserted after STOP	
	3.4 [66] TEMP: Linearity specification not met with default settings	9
	3.5 [78] TIMER: High current consumption when using timer STOP task only	10
	3.6 [87] CPU: Unexpected wake from System ON Idle when using FPU	10
	3.7 [136] System: Bits in RESETREAS are set when they should not be	11
	3.8 [170] I2S: NRF_I2S->PSEL CONNECT fields are not readable	11
	3.9 [173] GPIO: Writes to LATCH register take several CPU cycles to take effect	12
	3.10 [176] System: Flash erase through CTRL-AP fails due to watchdog time-out	12
	3.11 [183] PWM: False SEQEND[0] and SEQEND[1] events	13
	3.12 [184] NVMC: Erase or write operations from the external debugger fail when CPU is not halted	
		13
	3.13 [187] USBD: USB cannot be enabled	14
	3.14 [190] NFCT: Event FIELDDETECTED may be generated too early	15
	3.15 [194] I2S: STOP task does not switch off all resources	16
	3.16 [196] I2S: PSEL acquires GPIOs regardless of ENABLE	16
	3.17 [210] GPIO: Bits in GPIO LATCH register are incorrectly set to 1	17
	3.18 [212] SAADC: Events are not generated when switching from scan mode to no-scan mode	
	with burst enabled	17
	3.19 [218] NFCT: Frame delay timing is too short after SLP_REQ	18
	3.20 [219] TWIM: I2C timing spec is violated at 400 kHz	18
	3.21 [223] USBD: Unexpected behavior after reset	19
	3.22 [225] RADIO: RSSI parameter adjustment	19
	3.23 [228] RADIO: No interrupt is generated for SYNC event	20
	3.24 [233] NVMC: NVMC READYNEXT not generated	20
	3.25 [237] SAADC: TASKS_CALIBRATEOFFSET shall only be used before TASKS_START or after EVENTS END	21
	3.26 [241] SAADC: Static 400 μA current after SAADC is disabled	21
	3.27 [243] RADIO: T_IFS is inaccurate with Bluetooth Long Range	22
	3.28 [245] RADIO: CRC is wrong when data whitening is enabled and address field is included in	
	CRC calculation	23
	3.29 [246] System: Intermittent extra current consumption when going to sleep	23
	3.30 [248] RADIO: Reading DTX in MODECNFO gives incorrect value	24
	3.31 [251] NVMC: NVMC ERASEALL is blocked when access port protection is enabled	24
	3.32 [252] SAADC: Unexpected behavior when TASKS CALIBRATEOFFSET is used during sampling.	25
	3.33 [258] RADIO: PHYEND event is delayed for some AoA and AoD configurations	25
	3.34 [263] CCM: On-the-fly decryption fails for direction finding packets	26
4	Fixed anomalies.	27
5	New and inherited configurations.	28
	5.1 [249] DIF: Access port protection needs software interface configuration	28
	5.2 [255] RADIO: External PAs, FEMs, and LNAs need additional Radio configuration	29

1 nRF52833 Revision 2 Errata

This Errata document contains anomalies and configurations for the nRF52833 chip, Revision 2 (QIAA-Bx0, QDAA-Bx0, CJAA-Bx0).

The document indicates which anomalies are fixed, inherited, or new compared to Revision 1.

2 Revision history

See the following list for an overview of changes from previous versions of this document.

Version	Date	Change
nRF52833 Revision 2 v1.2	05.06.2023	 Added: No. 241. "Static 400 μA current after SAADC is disabled" Added: No. 263. "On-the-fly decryption fails for direction finding packets" Updated: No. 246. "Intermittent extra current consumption when going to sleep"
nRF52833 Revision 2 v1.1	09.02.2022	 Added: No. 243. "T_IFS is inaccurate with Bluetooth Long Range" Added: No. 251. "NVMC ERASEALL is blocked when access port protection is enabled" Added: No. 252. "Unexpected behavior when TASKS_CALIBRATEOFFSET is used during sampling" Added: No. 258. "PHYEND event is delayed for some AoA and AoD configurations"

3

New and inherited anomalies

The following anomalies are present in Revision 2 of the nRF52833 chip.

ID	Module	Description	Inherited from Revision 1
20	RTC	Register values are invalid	X
36	CLOCK	Some registers are not reset when expected	X
55	I2S	RXPTRUPD and TXPTRUPD events asserted after STOP	X
66	TEMP	Linearity specification not met with default settings	X
78	TIMER	High current consumption when using timer STOP task only	X
87	CPU	Unexpected wake from System ON Idle when using FPU	X
136	System	Bits in RESETREAS are set when they should not be	X
170	I2S	NRF_I2S->PSEL CONNECT fields are not readable	X
173	GPIO	Writes to LATCH register take several CPU cycles to take effect	X
176	System	Flash erase through CTRL-AP fails due to watchdog time-out	Х
183	PWM	False SEQEND[0] and SEQEND[1] events	X
184	NVMC	Erase or write operations from the external debugger fail when CPU is not halted	X
187	USBD	USB cannot be enabled	Х
190	NFCT	Event FIELDDETECTED may be generated too early	X
194	I2S	STOP task does not switch off all resources	X
196	I2S	PSEL acquires GPIOs regardless of ENABLE	X
210	GPIO	Bits in GPIO LATCH register are incorrectly set to 1	X
212	SAADC	Events are not generated when switching from scan mode to no- scan mode with burst enabled	X
218	NFCT	Frame delay timing is too short after SLP_REQ	Х
219	TWIM	I2C timing spec is violated at 400 kHz	Х
223	USBD	Unexpected behavior after reset	Х
225	RADIO	RSSI parameter adjustment	Х
228	RADIO	No interrupt is generated for SYNC event	Х
233	NVMC	NVMC READYNEXT not generated	Х
237	SAADC	TASKS_CALIBRATEOFFSET shall only be used before TASKS_START or after EVENTS_END	х
241	SAADC	Static 400 μA current after SAADC is disabled	Х

ID	Module	Description	Inherited from Revision 1
243	RADIO	T_IFS is inaccurate with Bluetooth Long Range	X
245	RADIO	CRC is wrong when data whitening is enabled and address field is included in CRC calculation	Х
246	System	Intermittent extra current consumption when going to sleep	X
248	RADIO	Reading DTX in MODECNF0 gives incorrect value	X
251	NVMC	NVMC ERASEALL is blocked when access port protection is enabled	X
252	SAADC	Unexpected behavior when TASKS_CALIBRATEOFFSET is used during sampling	X
258	RADIO	PHYEND event is delayed for some AoA and AoD configurations	X
263	ССМ	On-the-fly decryption fails for direction finding packets	X

Table 1: New and inherited anomalies

3.1 [20] RTC: Register values are invalid

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

RTC registers will not contain the correct/expected value if read.

Conditions

The RTC has been idle.

Consequences

RTC configuration cannot be determined by reading RTC registers.

Workaround

Execute the below code before you use RTC.

```
NRF_CLOCK->EVENTS_LFCLKSTARTED = 0;
NRF_CLOCK->TASKS_LFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) {}
NRF_RTCO->TASKS_STOP = 0;
```


3.2 [36] CLOCK: Some registers are not reset when expected

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

After watchdog timeout reset, CPU lockup reset, soft reset, or pin reset, the following CLOCK peripheral registers are not reset:

- CLOCK->EVENTS_DONE
- CLOCK->EVENTS_CTTO
- CLOCK->CTIV

Conditions

After watchdog timeout reset, CPU Lockup reset, soft reset, and pin reset.

Consequences

Register reset values might be incorrect. It may cause undesired interrupts in case of enabling interrupts without clearing the DONE or CTTO events.

Workaround

Clear affected registers after reset. This workaround has already been added into system_nrf52.c file. This workaround has already been added into system_nrf52840.c file present in MDK 8.11.0 or later.

3.3 [55] I2S: RXPTRUPD and TXPTRUPD events asserted after STOP

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The RXPTRUPD event is generated when the STOP task is triggered, even though reception (RX) is disabled. Similarly, the TXPTRUPD event is generated when the STOP task is triggered, even though transmission (TX) is disabled.

Conditions

A previous transfer has been performed with RX/TX enabled, respectively.

Consequences

The indication that RXTXD.MAXCNT words were received/transmitted is false.

Ignore the RXPTRUPD and TXPTRUPD events after triggering the STOP task. Clear these events before starting the next transfer.

3.4 [66] TEMP: Linearity specification not met with default settings

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

TEMP module provides non-linear temperature readings over the specified temperature range.

Conditions

Always.

Consequences

TEMP module returns out of spec temperature readings.

Workaround

Execute the following code after reset:

```
NRF TEMP->A0 = NRF FICR->TEMP.A0;
NRF TEMP->A1 = NRF FICR->TEMP.A1;
NRF_TEMP->A2 = NRF_FICR->TEMP.A2;
NRF_TEMP->A3 = NRF_FICR->TEMP.A3;
NRF TEMP->A4 = NRF_FICR->TEMP.A4;
NRF TEMP->A5 = NRF FICR->TEMP.A5;
NRF TEMP->B0 = NRF FICR->TEMP.B0;
NRF TEMP->B1 = NRF FICR->TEMP.B1;
NRF TEMP->B2 = NRF FICR->TEMP.B2;
NRF_TEMP->B3 = NRF_FICR->TEMP.B3;
NRF TEMP->B4 = NRF FICR->TEMP.B4;
NRF TEMP->B5 = NRF FICR->TEMP.B5;
NRF_TEMP->T0 = NRF_FICR->TEMP.T0;
NRF TEMP->T1 = NRF FICR->TEMP.T1;
NRF TEMP->T2 = NRF FICR->TEMP.T2;
NRF TEMP->T3 = NRF FICR->TEMP.T3;
NRF TEMP->T4 = NRF FICR->TEMP.T4;
```

This code is already present in the latest system_nrf52.c file and in the system_nrf52840.c file released in MDK 8.12.0.

3.5 [78] TIMER: High current consumption when using timer STOP task only

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Increased current consumption when the timer has been running and the STOP task is used to stop it.

Conditions

The timer has been running (after triggering a START task) and then it is stopped using a STOP task only.

Consequences

Increased current consumption.

Workaround

Use the SHUTDOWN task after the STOP task or instead of the STOP task.

3.6 [87] CPU: Unexpected wake from System ON Idle when using FPU

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The CPU is unexpectedly awoken from System ON Idle.

Conditions

The FPU has been used.

Consequences

The CPU is awoken from System ON Idle.

The FPU can generate pending interrupts just like other peripherals, but unlike other peripherals there are no INTENSET, INTENCLR registers for enabling or disabling interrupts at the peripheral level. In order to prevent unexpected wake-up from System ON Idle, add this code before entering sleep:

```
#if ( FPU USED == 1)
_set_FPSCR(_get_FPSCR() & ~(0x0000009F));
(void) __get_FPSCR();
NVIC_ClearPendingIRQ(FPU_IRQn);
#endif
__WFE();
```

3.7 [136] System: Bits in RESETREAS are set when they should not be

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

After pin reset, RESETREAS bits other than RESETPIN might also be set.

Conditions

A pin reset has triggered.

Consequences

If the firmware evaluates RESETREAS, it might take the wrong action.

Workaround

When RESETREAS shows a pin reset (RESETPIN), ignore other reset reason bits.

Important: RESETREAS bits must be cleared between resets.

Apply the following code after any reset:

```
if (NRF POWER->RESETREAS & POWER RESETREAS RESETPIN Msk) {
   NRF POWER->RESETREAS = ~POWER RESETREAS RESETPIN Msk;
```

This workaround is implemented in MDK version 8.13.0 and later.

3.8 [170] I2S: NRF_I2S->PSEL CONNECT fields are not readable

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

- CONNECT field of NRF I2S->PSEL.MCK is not readable.
- CONNECT field of NRF_I2S->PSEL.SCK is not readable.
- CONNECT field of NRF_I2S->PSEL.LRCK is not readable.
- CONNECT field of NRF I2S->PSEL.SDIN is not readable.
- CONNECT field of NRF 12S->PSEL.SDOUT is not readable.

Conditions

Always.

Consequences

When reading the value of NRF_I2S->PSEL registers, the CONNECT field might not return the same value that has been written to it.

Workaround

None.

3.9 [173] GPIO: Writes to LATCH register take several CPU cycles to take effect

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

A bit in the LATCH register reads '1' even after clearing it by writing '1'.

Conditions

Reading the LATCH register right after writing to it.

Consequences

Old value of the LATCH register is read.

Workaround

Have at least 3 CPU cycles of delay between the write and the subsequent read to the LATCH register. This can be achieved by having 3 dummy reads to the LATCH register.

3.10 [176] System: Flash erase through CTRL-AP fails due to watchdog time-out

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Full flash erase through CTRL-AP is not successful.

Conditions

WDT is enabled.

Consequences

Flash is not erased. If the device has a WDT time-out less than 1 ms and is readback-protected through UICR.APPROTECT, there is a risk of permanently preventing the erasing of the flash.

Workaround

Try again.

3.11 [183] PWM: False SEQEND[0] and SEQEND[1] events

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

False SEQEND[0] and SEQEND[1] events are being generated.

Conditions

Any of the LOOPSDONE_SEQSTARTn shortcuts are enabled. LOOP register is non-zero and sequence 1 is one value long.

Consequences

SEQEND[0] and SEQEND[1] events might falsely trigger other tasks if these are routed through the PPI.

Workaround

Avoid using the LOOPSDONE_SEQSTARTn shortcuts, when LOOP register is non-zero and sequence 1 is one value long.

3.12 [184] NVMC: Erase or write operations from the external debugger fail when CPU is not halted

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The erase or write operation fails or takes longer time than specified.

Conditions

NVMC erase or write operation initiated using an external debugger. CPU is not halted.

Consequences

The NVMC erase or write operation fails or takes longer time than specified.

Workaround

Halt the CPU by writing to DHCSR (Debug Halting Control and Status Register) before starting NVMC erase or write operation from the external debugger. See the ARM infocenter to get the details of the DHCSR register.

Programming tools provided by Nordic Semiconductor comply with this.

3.13 [187] USBD: USB cannot be enabled

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

After writing to NRF_USBD->ENABLE, no EVENTS_USBEVENT is triggered, and USB->EVENTCAUSE is not updated.

Conditions

Most recent reset type is soft reset or CPU lockup reset, or after a new firmware update to flash.

Consequences

USB is not working.

Implement code similar to the following around the USB enabling:

```
* (volatile uint32_t *)0x4006EC00 = 0x00009375;
* (volatile uint32_t *)0x4006ED14 = 0x00000003;
* (volatile uint32_t *)0x4006EC00 = 0x00009375;

/* Enable the peripheral */
NRF_USBD->ENABLE = USBD_ENABLE_ENABLE_Enabled<< USBD_ENABLE_ENABLE_ENABLE_Pos;

/* Waiting for peripheral to enable, this should take a few µs */
while (0 == (NRF_USBD->EVENTCAUSE & USBD_EVENTCAUSE_READY_Msk))
{
    /* Empty loop */
}
NRF_USBD->EVENTCAUSE &= ~USBD_EVENTCAUSE_READY_Msk;

* (volatile uint32_t *)0x4006EC00 = 0x00009375;
* (volatile uint32_t *)0x4006ED14 = 0x00000000;
* (volatile uint32_t *)0x4006EC00 = 0x00009375;
```

nRF5 SDK version 15 will include this workaround.

3.14 [190] NFCT: Event FIELDDETECTED may be generated too early

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Reset of the operating state after FIELDLOST event. In some cases, communication with the peer device is not possible.

Conditions

Always. Especially with stronger field strengths.

Consequences

Restart of transfer required.

Workaround

On FIELDDETECTED event, wait 1 ms (using timer) before starting NFC communication with NRF_NFCT->TASKS_ACTIVATE.

This workaround is included in SDK v15.0.0.

3.15 [194] I2S: STOP task does not switch off all resources

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Current consumption too high (~900 μA) after using the STOP task.

Conditions

12S was running and was stopped by triggering the STOP task.

Consequences

Current consumption higher than specified.

Workaround

Apply the following code after the STOP task:

```
*((volatile uint32_t *)0x40025038) = 1;
*((volatile uint32_t *)0x4002503C) = 1;
```

3.16 [196] I2S: PSEL acquires GPIOs regardless of ENABLE

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

I2S controls GPIO even when I2S is not enabled.

Conditions

When using I2S->PSEL to configure GPIO.

Consequences

GPIO selected for I2S cannot be used for any other peripheral and will be configured as input.

Workaround

Do not rely on the pins selected in I2S->PSEL registers being free when I2S->ENABLE is set to DISABLE.

Only set the CONNECT bit in the I2S->PSEL registers to CONNECTED immediately before enabling I2S. When disabling I2S, set the CONNECT bit in the I2S->PSEL registers to DISCONNECTED.

3.17 [210] GPIO: Bits in GPIO LATCH register are incorrectly set to 1

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The GPIO.LATCH[n] register is unexpectedly set to 1 (Latched).

Conditions

Set GPIO.PIN_CNF[n].SENSE at low level (3) at the same time as PIN_CNF[n].INPUT is set to Connect (0).

Consequences

The GPIO.LATCH[n] register is set to 1 (Latched). This could have side effects, depending on how the chip is configured to use this LATCH register.

Workaround

Always configure PIN_CNF[n].INPUT before PIN_CNF[n].SENSE.

3.18 [212] SAADC: Events are not generated when switching from scan mode to no-scan mode with burst enabled

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

SAADC stops working.

Conditions

Any of the following:

- Switching from multiple channels to single channel when BURST is disabled and acquisition time < 10 μs .
- Switching from multiple channels to single channel when BURST is enabled.

Consequences

SAADC does not generate the expected events.

Execute the following code before changing the channel configuration:

```
volatile uint32_t temp1;
volatile uint32_t temp2;
volatile uint32_t temp3;

temp1 = *(volatile uint32_t *)0x40007640ul;
temp2 = *(volatile uint32_t *)0x40007644ul;
temp3 = *(volatile uint32_t *)0x40007648ul;

*(volatile uint32_t *)0x40007FFCul = 0ul;
*(volatile uint32_t *)0x40007FFCul = 1ul;

*(volatile uint32_t *)0x40007FFCul = 1ul;

*(volatile uint32_t *)0x40007640ul = temp1;
*(volatile uint32_t *)0x40007644ul = temp2;
*(volatile uint32_t *)0x40007648ul = temp3;
```

After the workaround is executed, the SAADC configuration is reset. Before use all registers must be configured again.

3.19 [218] NFCT: Frame delay timing is too short after SLP_REQ

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Reader may not accept the response from the tag.

Conditions

The time between SLP_REQ and ALL_REQ sent by the Reader is shorter than the time configured in FRAMEDELAYMAX.

Consequences

The protocol timing is violated and a Reader may not accept the response from the tag.

Workaround

Ensure that FRAMEDELAYMAX is set to the default value when the NFCT is in states IDLE or SLEEP_A. The workaround is included in nRF5 SDK v16.0

3.20 [219] TWIM: I2C timing spec is violated at 400 kHz

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

NORDIC*

Symptoms

The low period of the SCL clock is too short to meet the I2C specification at 400 kHz. The actual low period of the SCL clock is 1.25 μ s while the I2C specification requires the SCL clock to have a minimum low period of 1.3 μ s.

Conditions

Using TWIM at 400 kHz.

Consequences

TWI communication might not work at 400 kHz with I2C compatible devices.

Workaround

If communication does not work at 400 kHz with an I2C compatible device that requires the SCL clock to have a minimum low period of 1.3 μ s, use 390 kHz instead of 400kHz by writing 0x06200000 to the FREQUENCY register. With this setting, the SCL low period is greater than 1.3 μ s.

3.21 [223] USBD: Unexpected behavior after reset

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The USBD might behave unexpectedly.

Conditions

USBD is enabled for the first time after a reset (USBD.ENABLE=1).

Consequences

The USBD internal state might not be reset correctly,

Note: This failure has not been reported or reproduced under test at the time of publication.

Workaround

When enabling the USBD for the first time after a reset, disable and re-enable. Wait for the status signal NRF_USBD->EVENTCAUSE set to USBD_EVENTCAUSE_READY after enabling, then disable and re-enable.

3.22 [225] RADIO: RSSI parameter adjustment

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

RSSI changes over temperature.

Conditions

Temperature $\leq +10^{\circ}$ C or $> +30^{\circ}$ C.

Consequences

RSSI parameter not within specified accuracy.

Workaround

Add the following compensation to the RSSI sample value based on temperature measurement (the onchip TEMP peripheral can be used to measure temperature):

- For TEMP ≤ -30°C, RSSISAMPLE = RSSISAMPLE +3
- For TEMP > -30°C and TEMP ≤ -10°C, RSSISAMPLE = RSSISAMPLE +2
- For TEMP > -10°C and TEMP ≤ +10°C, RSSISAMPLE = RSSISAMPLE +1
- For TEMP > +10°C and TEMP ≤ +30°C, RSSISAMPLE = RSSISAMPLE + 0
- For TEMP > +30°C and TEMP ≤ +50°C, RSSISAMPLE = RSSISAMPLE 1
- For TEMP > +50°C and TEMP ≤ +70°C, RSSISAMPLE = RSSISAMPLE 2
- For TEMP > +70°C and TEMP ≤ +85°C, RSSISAMPLE = RSSISAMPLE 3
- For TEMP > +85°C, RSSISAMPLE = RSSISAMPLE 4

3.23 [228] RADIO: No interrupt is generated for SYNC event

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Interrupt Service Routine (ISR) for the SYNC event does not run.

Conditions

Always.

Consequences

ISR for the SYNC event does not run.

Workaround

Connect the SYNC event to an EGU task through a PPI channel. Handle the interrupt in the corresponding EGU ISR.

3.24 [233] NVMC: NVMC READYNEXT not generated

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

When executing from NVM and performing an NVM operation, READYNEXT might not be asserted. If the program is waiting for READYNEXT, the program stops executing.

Conditions

When executing from NVM. Using READYNEXT when executing from RAM is not affected.

Consequences

READYNEXT should not be used when executing from NVM.

Workaround

Use READY instead. Using READY instead of READYNEXT has no penalty when executing from NVM.

3.25 [237] SAADC: TASKS_CALIBRATEOFFSET shall only be used before TASKS_START or after EVENTS_END

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Unexpected samples are written to RAM.

Conditions

TASKS_CALIBRATEOFFSET is triggered between TASKS_START and EVENTS_END.

Workaround

TASKS CALIBRATEOFFSET shall be used only before TASKS START or after EVENTS END.

3.26 [241] SAADC: Static 400 μ A current after SAADC is disabled

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Static current consumption between 400 μA and 450 μA occurs.

Conditions

SAADC is disabled after sampling with BURST when multiple channels have been enabled.

Consequences

Current consumption is higher than expected.

Workaround

Execute the following code after disabling SAADC:

```
volatile uint32_t temp1;
volatile uint32_t temp2;
volatile uint32_t temp3;

temp1 = *(volatile uint32_t *)0x40007640ul;
temp2 = *(volatile uint32_t *)0x40007644ul;
temp3 = *(volatile uint32_t *)0x40007648ul;

*(volatile uint32_t *)0x40007FFCul = 0ul;
*(volatile uint32_t *)0x40007FFCul = 1ul;

*(volatile uint32_t *)0x40007FFCul = 1ul;

*(volatile uint32_t *)0x40007640ul = temp1;
*(volatile uint32_t *)0x40007644ul = temp2;
*(volatile uint32_t *)0x40007648ul = temp3;
```

After the workaround is executed, the SAADC configuration is reset and all registers must be configured again.

3.27 [243] RADIO: T_IFS is inaccurate with Bluetooth Long Range

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The measured T_IFS is inaccurate for LE Coded PHY.

Conditions

Using default values of the TIFS register.

Consequences

T_IFS does not meet the accuracy required by the Bluetooth specification.

Workaround

Depending on the mode of the received packet and the mode selected for the next transmission, update the TIFS register with the following values:

```
• RX: mode 6 (S=2), TX: mode 6 (S=2): 144
```

- RX: mode 5 (S=8), TX: mode 5 (S=8): 149
- RX: mode 5 (S=8), TX: mode 6 (S=2): 139

RX: mode 6 (S=2), TX: mode 5 (S=8): 154

The TIFS register must be updated before the DISABLED event from the receive packet. Otherwise, the new value is not taken into account for the next transmission. The rate of the last received packet can be found in the CISTAT field of the PDUSTAT register. The CISTAT field is updated approximately 1 μ s after the ADDRESS event. The SoftDevice, Zephyr Controller subsystem (Zephyr and nRF Connect SDK), and SoftDevice Controller subsystem (nRF Connect SDK) are not affected by this errata.

3.28 [245] RADIO: CRC is wrong when data whitening is enabled and address field is included in CRC calculation

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

CRC failures are reported.

Conditions

In RX, if data whitening is enabled and the CRC checker is configured to take the address field into CRC calculations.

Consequences

CRC failures are reported though received packet contents are good.

3.29 [246] System: Intermittent extra current consumption when going to sleep

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Extra current consumption in the range of 350 µA when in System On Idle.

Conditions

A high-speed peripheral (CPU, CRYPTOCELL, USB, or CTRL-AP) accesses a RAM block which is being accessed by a low-speed peripheral through the DMA bus with a specific timing, and the high-speed peripheral has higher priority than the low-speed peripheral.

Consequences

Extra current consumption in System On Idle.

Apply the following code after any reset:

```
*(volatile uint32_t *)0x4007AC84ul = 0x00000002ul;
```

Workaround consequences: Up to 40 µA current increase when the 16 MHz clock is used.

3.30 [248] RADIO: Reading DTX in MODECNF0 gives incorrect value

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

Reading DTX in MODECNF0 gives incorrect value.

Conditions

Always.

Consequences

Reading MODECNFO.DTX field returns wrong value.

Workaround

Treat MODECNFO.DTX field as write only.

3.31 [251] NVMC: NVMC ERASEALL is blocked when access port protection is enabled

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

NVMC ERASEALL is blocked when access port protection is enabled.

Conditions

Always

Consequences

ERASEALL cannot be triggered by the CPU once access port protection is enabled.

Use page erase if the content of the NVM needs to be erased by the CPU once access port protection has been enabled.

3.32 [252] SAADC: Unexpected behavior when TASKS_CALIBRATEOFFSET is used during sampling

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The EasyDMA results buffer in RAM has incorrect values.

Conditions

TASKS_CALIBRATEOFFSET is run after TASKS_START and before EVENTS_END.

Consequences

Incorrect values are stored in RAM.

Workaround

Run TASKS_CALIBRATEOFFSET before TASKS_START or after EVENTS_END.

3.33 [258] RADIO: PHYEND event is delayed for some AoA and AoD configurations

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

The PHYEND event is generated 16 µs too late when compared to the actual end of frame on air.

Conditions

The RADIO peripheral enables the parsing of CTEInfo from the received packets in Bluetooth Low Energy modes using the CTEINLINECONF register and the received PDU does not contain CTEInfo.

Consequences

If protocol timing, for example T_IFS, is based on the PHYEND event, the device is not compliant.

Workaround

Checking the CTEPRESENT event allows software to detect this case. It must then compensate any timing based on the PHYEND event by 16 μs .

3.34 [263] CCM: On-the-fly decryption fails for direction finding packets

This anomaly applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

It was inherited from the previous IC revision Revision 1.

Symptoms

MICSTATUS reports CheckFail, and decrypted data is wrong.

Conditions

The header of the received Bluetooth packets has the CP bit set and contains the CTEInfo byte.

Consequences

Direction finding packets are incorrectly rejected.

Workaround

Replace the PPI connection from RADIO EVENTS_ADDRESS event to CCM TASKS_CRYPT with a PPI connection from RADIO EVENTS_BCMATCH to CCM TASKS_CRYPT and configure the RADIO register BCC with the value 3.

4 Fixed anomalies

The anomalies listed in this table are no longer present in the current chip version.

For a detailed description of the fixed anomalies, see the Errata for Revision 1.

ID	Module	Description
236	RADIO	Conversion formulas for RADIO energy related values incorrect in PS

Table 2: Fixed anomalies

5

New and inherited configurations

The following configurations apply to Revision 2 of the nRF52833 chip.

ID	Module	Description	Inherited from Revision 1
249	DIF	Access port protection needs software interface configuration	
255	RADIO	External PAs, FEMs, and LNAs need additional Radio configuration	

Table 3: Configurations

5.1 [249] DIF: Access port protection needs software interface configuration

This configuration applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

Symptoms

Access port protection (APPROTECT) is enabled by default and must be disabled by software.

Conditions

After any power-on reset, brownout reset, watchdog timer reset, pin reset, or wake up from System OFF mode if not in debug interface mode.

Consequences

The device cannot be debugged or programmed without erasing the non-volatile memory.

Workaround

To enable debugging and programming, apply the following code before the start of the application code:

```
NRF_APPROTECT->DISABLE = APPROTECT_DISABLE_DISABLE_SwDisable;
```

To force the disabling of debugging and programming, apply the following code before the start of the application code:

```
NRF_APPROTECT->FORCEPROTECT = APPROTECT_FORCEPROTECT_FORCEPROTECT_Force;
```

This workaround is implemented in MDK version 8.40.2 and later.

5.2 [255] RADIO: External PAs, FEMs, and LNAs need additional Radio configuration

This configuration applies to Revision 2, build codes QIAA-Bx0, QDAA-Bx0, CJAA-Bx0.

Symptoms

When transmitting in IEEE802.15.4 mode with an external RF Front End Module (FEM) or Power Amplifier (PA), the power emitted in adjacent RF channels might violate the requirements in section TP/154/PHY24/TRANSMIT-05 of the ZigBee IEEE 802.15.4 Test Specification. When receiving in any radio mode with an external high-gain FEM or Low Noise Amplifier (LNA), the amplified signal might negatively impact the blocking performance of the combination of the nRF52 device and the FEM or LNA.

Conditions

Operating with an external RF frontend. Devices with date code 2218 or later.

Workaround

Apply the following code before enabling the RADIO in any radio mode:

```
if (*(volatile uint32_t *) 0x10000330ul != 0xFFFFFFFFFul) {
    *(volatile uint32_t *) 0x4000174Cul = *(volatile uint32_t *) 0x10000330ul;
}
```

Apply the following code before enabling the RADIO in 802.15.4 mode:

```
if (*(volatile uint32_t *) 0x10000334ul != 0xFFFFFFFFul) {
    *(volatile uint32_t *) 0x40001584ul = *(volatile uint32_t *) 0x10000334ul;
}
if (*(volatile uint32_t *) 0x10000338ul != 0xFFFFFFFFul) {
    *(volatile uint32_t *) 0x40001588ul = *(volatile uint32_t *) 0x10000338ul;
}
```

If entering another RADIO mode after mode 802.15.4, apply the following code before enabling the RADIO:

```
if (*(volatile uint32_t *) 0x10000334ul != 0xFFFFFFFFul) {
    *(volatile uint32_t *) 0x40001584ul = ((*(volatile uint32_t *) 0x40001584ul) &
    0xBFFFFFFul) | 0x00010000ul;
}
if (*(volatile uint32_t *) 0x10000338ul != 0xFFFFFFFFul) {
    *(volatile uint32_t *) 0x40001588ul = ((*(volatile uint32_t *) 0x40001588ul) &
    0xBFFFFFFul);
}
```

This workaround is included in nRF Connect SDK 1.7 and later.

