Getting started with nRF5 SDK and Keil (nRF51 & nRF52 Series)

Getting Started Guide

v1.3
Contents

- Revision history .. iii
- Introduction .. 4
- Minimum requirements 5
- Development kits, PCA numbers, and chips 6
- SoftDevices ... 7
- Running a first test 8
- Setting up your toolchain 10
 - 6.1 Nordic tools and downloads 10
 - 6.2 Installing the ARM Keil MDK 13
 - 6.3 Setting up the nRF5 SDK 13
 - 6.4 Installing the nRF Command Line Tools ... 13
 - 6.5 Installing nRF Connect Programmer 14
- Programming an application 15
 - 7.1 Erasing the kit 15
 - 7.2 Compiling the application 15
 - 7.3 Programming the SoftDevice 16
 - 7.4 Programming the application 17
- Communicating with the kit 19
 - 8.1 Connecting via RTT 19
 - 8.2 Connecting via CDC-UART 19
- Testing the application 21
 - 9.1 Testing with a mobile device 21
 - 9.2 Testing with a computer 22
- Debugging ... 24
- Glossary ... 25
- Recommended reading 26
- Legal notices ... 27
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-10-26</td>
<td>Updated link to Getting started with nRF52 Series</td>
</tr>
</tbody>
</table>
| April 2020 | • Changed the document title to clarify that this Getting Started Guide targets the nRF5 SDK
| | • Added **Installing nRF Connect Programmer** on page 14 |
| | • Updated **Erasing the kit** on page 15 and **Programming the SoftDevice** on page 16 to use nRF Connect Programmer instead of nRFgo Studio |
| | • Editorial changes |
| September 2019 | Fixed broken links |
| July 2018 | First release |
Introduction

This guide will help you get started with your nRF51 or nRF52 Series Development Kit (DK) and developing your application with the nRF5 SDK on Windows with the Arm® Keil MDK.

If you have worked with any of Nordic Semiconductor's products before, you are probably familiar with the Software Development Kit (SDK) and the required tools. In this case, this guide will mostly provide reference information.

Use this guide to set up your development toolchain so you can develop, program, test, and debug your application.

This guide describes how to work with the Arm Keil MDK on a Windows operating system. Arm Keil MDK comes with the Arm C/C++ compiler and the µVision Integrated Development Environment (IDE), and all versions of the nRF5 SDK provide ready-to-use Keil projects.

Note: In MDK-Lite, which is free for evaluation and education, code size is restricted to 32 Kbyte. Since most projects require a bigger code size, we recommend using SEGGER Embedded Studio (SES) instead, which is free for use with Nordic Semiconductor devices.

The following Getting Started Guides show how to work with different software development platforms and devices:

- Getting started with nRF Connect SDK (nRF53 Series)
- Getting started with nRF Connect SDK (nRF52 Series)
- Getting started with nRF5 SDK and SES (nRF51 & nRF52 Series)
- Getting started with nRF5 SDK and Keil (nRF51 & nRF52 Series) (this document)

Check out the Nordic DevZone for additional setup information and help.
Minimum requirements

Ensure that you have all the required hardware and that your computer fulfills the software requirements.

Hardware requirements
- One of the following development kits:
 - nRF52840 DK
 - nRF52833 DK
 - nRF52 DK
 - nRF51 DK
- Micro-USB 2.0 cable
- Personal computer (PC)
- Optional for testing:
 - Smartphone or tablet that supports Bluetooth® Low Energy
 - nRF52840 Dongle, nRF51 Dongle, or a second Nordic DK

Software requirements
One of the following operating systems:
- Windows 8 or Windows 10
Development kits, PCA numbers, and chips

Nordic Semiconductor’s software tools either target the chip that is soldered onto the kit’s development kit, or target the development kit itself.

The following table lists the PCA number and the chip bundled in each kit.

<table>
<thead>
<tr>
<th>Development kit</th>
<th>PCA number</th>
<th>Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>nRF52840 DK</td>
<td>PCA10056</td>
<td>nRF52840</td>
</tr>
<tr>
<td>nRF52840 Dongle</td>
<td>PCA10059</td>
<td>nRF52840</td>
</tr>
<tr>
<td>nRF52833 DK</td>
<td>PCA10100</td>
<td>nRF52833</td>
</tr>
<tr>
<td>nRF52 DK</td>
<td>PCA10040</td>
<td>nRF52832/nRF52810</td>
</tr>
<tr>
<td>nRF51 DK</td>
<td>PCA10028</td>
<td>nRF51422</td>
</tr>
<tr>
<td>nRF51 Dongle</td>
<td>PCA10031</td>
<td>nRF51422</td>
</tr>
</tbody>
</table>

Table 1: Relation between development kits, PCA numbers, and chips
A SoftDevice is a wireless protocol stack that complements an nRF5 Series System on Chip (SoC). Nordic Semiconductor provides them as qualified, precompiled binary files. While it is possible to build applications without using a SoftDevice, all nRF5 SDK example applications that use Bluetooth Low Energy or ANT™ require a SoftDevice.

See the compatibility matrices for detailed information about which SoftDevice versions are supported for each chip. The following table summarizes the usage scenarios for each SoftDevice.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Role</th>
<th>Chip</th>
<th>SoftDevice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth Low Energy</td>
<td>Peripheral</td>
<td>• nRF51422</td>
<td>S110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF51822</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52810</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52832</td>
<td>S112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52833</td>
<td>S113</td>
</tr>
<tr>
<td></td>
<td>Central or Peripheral</td>
<td>• nRF51422</td>
<td>S120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF51822</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central and Peripheral</td>
<td>• nRF51422</td>
<td>S130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF51822</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52832</td>
<td>S132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52833</td>
<td>S140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52840</td>
<td></td>
</tr>
<tr>
<td>ANT</td>
<td></td>
<td>• nRF51422</td>
<td>S210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52832</td>
<td>S212</td>
</tr>
<tr>
<td>Bluetooth Low Energy and ANT</td>
<td>Peripheral</td>
<td>• nRF51422</td>
<td>S310</td>
</tr>
<tr>
<td></td>
<td>Peripheral and Broadcaster</td>
<td>• nRF52810</td>
<td>S312</td>
</tr>
<tr>
<td></td>
<td>All roles</td>
<td>• nRF52832</td>
<td>S332</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nRF52840</td>
<td>S340</td>
</tr>
</tbody>
</table>

Table 2: SoftDevice overview
Running a first test

Before you start developing, program and run a precompiled application on your development kit to ensure that the kit functions as expected and the communication between your computer and development kit works.

1. Download the latest compatible version of the nRF5 SDK.

 The nRF5 SDK contains precompiled HEX files of the most common examples. Extract the zip file into a folder of your choice.

 For information about which SDK supports which IC revisions, check the compatibility matrices.

2. Power up the development kit:
 a) Connect one end of a micro-USB 2.0 cable to the Universal Serial Bus (USB) connector on the kit and the other end to one of your PC’s USB host ports.
 b) Slide the power switch to ON.

 Observe that LED1 starts blinking.

3. Open a file explorer and confirm that the development kit has appeared as a removable drive named JLINK.

 On Windows, you should see a pop-up window similar to this:
4. In the folder where you extracted the nRF5 SDK, navigate to examples/ble_peripheral/ble_app_hrs/hex.

5. Select the HEX file that corresponds to your development kit and copy it to the JLINK drive. The development kit will now restart and run the application. Note that while restarting, the JLINK drive will be disconnected.

6. Download and install the Nordic nRF Toolbox app from Google Play or App Store.

7. Open nRF Toolbox.

 Note: Enable Bluetooth if prompted.

8. Tap HRM.

9. Tap Connect.

10. Select Nordic_HRS.

 A simulated heart rate and battery charge percentage is displayed.

For more advanced testing scenarios, see Testing the application on page 21.

Next, continue to set up your development toolchain and build and program an application from the source code.
6 Setting up your toolchain

Before you can start developing, you must install the required software. This software includes tools to connect to your development kit, an IDE for developing your application, and the nRF5 SDK that provides libraries and example applications.

See Nordic tools and downloads on page 10 for an overview of available tools and the links to download the latest versions for your operating system.

The following tools are required for this Getting Started Guide:

- Keil MDK-ARM Development Kit
- nRF5 SDK
- nRF Command Line Tools (including nrfjprog)

The following tool is optional:

- nRF Connect Programmer

See the following sections for installation instructions.

6.1 Nordic tools and downloads

This overview lists all available Nordic Semiconductor tools and supported IDEs. Not all of these tools are required. To help you pick the IDE and tools you want to use, see the following sections for common setup scenarios.

Development IDE

Pick one of the IDEs with a compiler supported by Nordic:

<table>
<thead>
<tr>
<th>IDE</th>
<th>Windows</th>
<th>Linux</th>
<th>OSX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGGER Embedded Studio (SES)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MDK-ARM Keil µVision</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GNU/GCC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IAR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

SES is the recommended platform. It is free for use with nRF devices.

Essential tools

You need to download these Nordic tools to develop with our devices.
Setting up your toolchain

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Download</th>
<th>Documentation</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDK (Software Development Kit)</td>
<td>Application examples, source files, SoftDevices</td>
<td>Windows/Linux</td>
<td>nRF5 SDK v17.1.0</td>
<td>BLE/ANT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nRF5 SDK for Mesh v5.0.0</td>
<td>Bluetooth Mesh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nRF5 SDK for Thread and Zigbee v4.2.0</td>
<td>Thread and Zigbee</td>
</tr>
<tr>
<td>nRF Command Line Tools</td>
<td>Collection of command line tools, like nrfjprog, mergehex</td>
<td>nRF Command Line Tools</td>
<td>nRF Command Line Tools</td>
<td>BLE/ANT</td>
</tr>
</tbody>
</table>

Optional tools

These tools are not essential, but we recommend that you use them.
<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Download</th>
<th>Documentation</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftDevice</td>
<td>Wireless protocol stack</td>
<td>Compatible downloads for nRF52840
Compatible downloads for nRF52833
Compatible downloads for nRF52832
Compatible downloads for nRF52811
Compatible downloads for nRF52810
Compatible downloads for nRF51822
Compatible downloads for nRF51422</td>
<td>nRF51 SoftDevice Specifications
nRF52 SoftDevice Specifications</td>
<td>BLE/ANT</td>
</tr>
<tr>
<td>nRF Connect for Desktop</td>
<td>Expandable desktop tool with several apps, including:
• Peer device emulator
• Power Profiler
• Programmer
• Cloud Gateway</td>
<td>nRF Connect for Desktop</td>
<td>nRF Connect Bluetooth Low Energy</td>
<td>BLE</td>
</tr>
<tr>
<td>nRF Connect for Mobile</td>
<td>Peer device emulator app for smartphones</td>
<td>Android v4.3 or later
IOS v8 or later</td>
<td></td>
<td>BLE</td>
</tr>
<tr>
<td>Nordic nRF Toolbox app</td>
<td>App that contains all the Nordic apps</td>
<td>Android v4.3 or later
IOS v8 or later
Windows Phone v8.1 or later</td>
<td></td>
<td>BLE</td>
</tr>
<tr>
<td>nRF pynrfjprog</td>
<td>Simple Python interface for the nrfjprog DLL</td>
<td>nRF pynrfjprog</td>
<td>nRF pynrfjprog</td>
<td>BLE/ANT</td>
</tr>
<tr>
<td>ANTware II</td>
<td>Peer device emulator for the ANT protocol running on computers</td>
<td>ANTware II</td>
<td></td>
<td>ANT</td>
</tr>
<tr>
<td>nRF Sniffer</td>
<td>App for monitoring on-air traffic</td>
<td>nRF Sniffer download</td>
<td>nRF Sniffer for Bluetooth LE</td>
<td>BLE</td>
</tr>
<tr>
<td>nRF Thread Topology Monitor</td>
<td>Tool for visualizing Thread mesh network topology in real time</td>
<td>nRF Thread Topology Monitor download page</td>
<td>nRF Thread Topology Monitor</td>
<td>Thread</td>
</tr>
<tr>
<td>Thread Border Router</td>
<td>Gateway for connecting Thread</td>
<td>Thread Border Router</td>
<td>Thread Border Router</td>
<td>Thread</td>
</tr>
</tbody>
</table>
6.2 Installing the ARM Keil MDK

The ARM Keil MDK includes the ARM C/C++ compiler and the µVision IDE.

Follow the instructions in Getting Started with MDK to download and install the ARM Keil MDK.

Note that there are different editions of the ARM Keil MDK depending on the license that you choose. In the MDK-Lite edition, which is free for evaluation and education, code size is restricted to 32 Kbyte.

6.3 Setting up the nRF5 SDK

The nRF5 SDK does not require installation. You only need to download and extract the files.

If you followed the instructions in Running a first test on page 8, you already downloaded and extracted the nRF5 SDK files and are all set up.

Complete the following steps to set up your SDK environment:

1. Download the nRF5 SDK zip file.
 - If you have an nRF52 device, select the latest version. For nRF51 devices, select the latest version with support for nRF51 (currently, v12.3.0). For information about which SDK supports which IC revisions, check the compatibility matrices.
2. Extract the zip file to the directory that you want to use to work with the SDK.
 - This folder will be referred to as SDK_dir in the following documentation.

 Note: Compilers tend to run into problems with long path names. Therefore, place the folder as close to the root level of your file system as possible (for example, at C:/Nordic/SDK). Also, avoid using spaces in the file path and folder name.

6.4 Installing the nRF Command Line Tools

The nRF Command Line Tools are used for developing, programming, and debugging Nordic Semiconductor’s SoCs.

Complete the following steps to install the nRF Command Line Tools and verify the installation:

1. Follow the instructions in Installing the nRF Command Line Tools to download and install the nRF Command Line Tools.
2. Enter the following command in a command line to make sure that nrfjprog is installed correctly:
   ```shell
   nrfjprog --version
   ```
 - If you get an error message that the command cannot be found, nrfjprog must be manually added to the PATH.
 a) Go to the Windows Advanced system settings and click Environment Variables.
 b) Select the Path variable and click Edit.
 c) Add the following text at the end of the variable value: ;C:\Program Files (x86)\Nordic Semiconductor\nrf-command-line-tools\bin

See also Nordic mobile apps for a list of available Bluetooth Low Energy and Mesh mobile apps for iOS, Android, and Windows Phones.
Make sure that you add a semicolon (;) between entries in the PATH values: `path1;path2`

d) Click **OK** twice.
Open a new command prompt and repeat the command. It should now succeed.

6.5 Installing nRF Connect Programmer

nRF Connect Programmer is an app for *nRF Connect for Desktop* that you can use to program and erase chips.

Installing nRF Connect Programmer is not required. You can use this tool instead of *nrfjprog* if you prefer a graphical interface to a command line tool.

Follow the instructions in *Installing the Programmer* to install nRF Connect for Desktop and the Programmer app.
Programming an application

After setting up the required toolchain, you are ready to compile your application and program (or "flash") it to your development kit.

In Windows, you can choose if you want to use a command line tool or a GUI-based tool to program your device.

7.1 Erasing the kit

Before you program an example to the development kit, you should erase the contents of the kit.

There are two ways to erase the kit. You can use the command line tool nrfjprog (part of the nRF Command Line Tools) or the nRF Connect Programmer.

- To erase the contents of the kit with nrfjprog, enter the following command:

 - For nRF51 devices: `nrfjprog --family nRF51 --eraseall`
 - For nRF52 devices: `nrfjprog --family nRF52 --eraseall`

- To erase the contents of the kit with the nRF Connect Programmer, select your device in the navigation bar. Then click Erase all in the Device section.

7.2 Compiling the application

The nRF5 SDK provides example projects for Keil µVision, so compiling the application is very straightforward.

1. In the nRF5 SDK directory, navigate to the folder that contains the example project that you want to run.

 For a first test, select the ble_app_uart example. It is located in the `SDK_dir\examples\ble_peripheral\ble_app_uart\pca_number\SoftDevice\arm5_no_packs` folder,
where pca_number is the PCA number and SoftDevice is the SoftDevice that you use. For example, for an nRF52 DK for nRF52832, go to the following folder:

```
SDK_dir\examples\ble_peripheral\ble_app_uart \ pca10040\s132\arm5_no_packs
```

2. Double-click the `.uvprojx` file to open the project in Keil.

3. If Keil prompts you to install the nRF_DeviceFamilyPack (also known as nRF5 MDK), accept and install the Device Family Pack.

4. If you are not using PCA10028 (nRF51 DK) or PCA10040 (nRF52 DK), define the correct kit in the project.
 a) Go to Projects > Options for Target or click the shortcut.

 <image of options for target dialog>

 b) In the C/C++ tab, change the BOARD_PCA10028 define to the kit that you are using.

 See the `components\boards\boards.h` file for a list of supported kits.

5. Compile all files by clicking the build button.

7.3 Programming the SoftDevice

If your application uses Bluetooth or ANT, you must program a SoftDevice in addition to the application.

There are several ways to program the SoftDevice to the kit. You can program the SoftDevice directly from Keil, use the command line tool nrfjprog (part of the nRF Command Line Tools), or use nRF Connect Programmer.

The Bluetooth SoftDevices are included in the nRF5 SDK and can be found in the `SDK_dir\components\softdevice\` folder. Check SoftDevices on page 7 for information about which SoftDevice is compatible with your development kit.

Note: The nRF5 SDK does not contain ANT SoftDevices. You can download them from thisisant.com. The nRF5 SDK does not provide Targets to program ANT SoftDevices. Therefore, you must use nrfjprog or nRF Connect Programmer to program them.

- To program the SoftDevice with Keil, complete the following steps:
a) Instead of the default Target, select the Target to flash the SoftDevice, for example, flash_s132_nrf52_6.0.0_softdevice.

b) Click Options for Target.
c) Select the Debug pane and click the Settings button for the J-Link / J-TRACE Cortex.
d) Select the J-Link / J-Trace Adapter corresponding to the serial number that is printed on your device.
e) Click OK to close the dialogs.
f) In the main window, click the Load button to program the SoftDevice.

- To program the SoftDevice with nrfjprog, enter the following command, where HEX is the path and file name of the SoftDevice HEX file:
 - For nRF51 devices: nrfjprog --family nRF51 --program HEX
 - For nRF52 devices: nrfjprog --family nRF52 --program HEX
- To program the SoftDevice with nRF Connect Programmer, follow the instructions in Programming a Development Kit or the nRF51 Dongle.

7.4 Programming the application

After compiling the application and programming the SoftDevice, you are ready to program the application.

The easiest way to program the application is to do it directly from Keil.

1. Click the Load button in Keil.

2. If Keil prompts you to update to the latest firmware version, select Yes.

In this example, we compiled and programmed the ble_app_uart application. If everything worked as expected, you should see LED1 blinking on the kit approximately every 2 seconds.

If you have more than one kit connected to your computer, you will get an error message. In this case, configure which kit Keil should use:

1. Select Project > Options for Target 'XXX'.
2. Switch to the Debug tab.
3. Click the **Settings** button next to the selected "J-LINK / J-TRACE Cortex" option.
4. Choose the serial number of your kit from the **SN** list in the J-Link / J-Trace Adapter area.
5. Confirm, then click the **Load** button again.
Communicating with the kit

If your application outputs logging information or needs console input, you should connect the kit to your computer to interact with a console. You can use Real Time Transfer (RTT) or Universal Asynchronous Receiver/Transmitter (UART) for communicating with the kit.

SEGGER Real Time Transfer (RTT) is a proprietary technology for bidirectional communication that supports J-Link devices and ARM-based microcontrollers. The advantage of using RTT is that it is very efficient and does not require any other peripheral than the J-Link debugging interface.

Connecting via UART is quick and power-efficient, but it requires dedicated use of the UART peripheral for logging. The nRF5 DKs and the nRF51 Dongle include a UART to USB CDC ACM bridge, which is needed to connect to the UART. Alternatively, you can use an external UART to USB bridge. We use the term CDC-UART to refer to UART communication through the UART to USB CDC ACM bridge, to distinguish it from communication through the Nordic UART Service (NUS) over Bluetooth Low Energy.

8.1 Connecting via RTT

To communicate via RTT, connect your development kit via USB and run the J-Link RTT Viewer. The J-Link RTT Viewer is installed as part of the nRF Command Line Tools.

To run the J-Link RTT Viewer on Windows, complete the following steps:
1. Select the correct target device. The target device is represented by the ID of your development kit.
2. Select SWD as the target interface.

8.2 Connecting via CDC-UART

To connect via CDC-UART, start a terminal emulator and connect to the used COM port.

There is a wide variety of terminal emulators that you can use, for example, Termite (GUI-based, Windows only) or PuTTY (GUI-based, available for multiple operating systems).

When configuring the connection, use the following UART settings:
- Baud rate: 115200 (default baud rate for most examples in the nRF5 SDK)
Communicating with the kit

- 8 data bits
- 1 stop bit
- No parity
- HW flow control: RTS/CTS

The following instructions show how to configure Termite on Windows. Other GUI-based terminal emulators can be set up in a similar way.

1. Download and install the latest version of Termite.
2. Connect the development kit to your computer.
3. Open Termite and click Settings.

 Depending on what devices you have connected to your computer, you might have several choices, as shown in the following figure:

4. Select the correct COM port to connect to the kit.

 To find the correct port, follow these steps:
 a) Go to the start menu in Windows and type \texttt{devmgmt.msc} to open the Device Manager.
 b) Scroll down and expand Ports (COM & LPT).
 c) Find the port named 	exttt{JLink CDC UART Port} and note down the number in parentheses.
 d) If you have more than one J-Link UART port, unplug the one that you want to use, plug it back in, and observe which one appeared last.

5. Configure the baud rate and the flow control. Use the default values for the rest of the settings (8 data bits, 1 stop bit, no parity).

 By default, the SDK uses a baud rate of 115200 and RTS/CTS flow control.

6. Make sure that Append LF is selected.

 This option appends a newline character to any text that is sent.

7. Configure the terminal to send an RTS (Ready To Send) signal to the development kit:
 a) Go to Settings > Plug Ins.
 b) Enable Status LEDs and click OK.
 c) Click on the dark green rectangle above RTS to set this signal high.
 The text Start... is displayed in Termite.
9 Testing the application

The next step after compiling and programming your application is to test it. With the nRF Connect platform, Nordic Semiconductor provides its own testing apps, which are available both for mobile and for desktop.

9.1 Testing with a mobile device

If you have a mobile device that supports Bluetooth Low Energy, download the nRF Connect app from Google Play or App Store to test your application.

The following procedure assumes that you have programmed the Bluetooth Low Energy Peripheral UART example from the nRF5 SDK (examples/ble_peripheral/ble_app_uart) on your development kit. Steps for testing other examples are similar. See the testing instructions for each example in the nRF5 SDK documentation for more information.

1. Download and install nRF Connect from Google Play or App Store.
2. Open nRF Connect.
3. Make sure that the development kit is running the ble_app_uart example. LED1 should be blinking every 2 seconds, indicating that it is advertising.
4. Tap Scan.
5. Find the device and tap Connect.
 The default device name for the Peripheral UART example is "Nordic_UART".
6. When connected, tap the options button below the device name and select Enable services.
Testing the application

This example communicates over Bluetooth Low Energy using the Nordic UART Service (NUS).

7. Tap the options button and select **Show log**.

8. In a **terminal connected via CDC-UART**, enter `hello` and send it to the development kit.
 The text is sent through the development kit to your mobile device over a Bluetooth Low Energy link.
 The mobile device will then display it in the nRF Connect log:

![Device connection and data transfer](image)

9.2 Testing with a computer

If you have a dongle or a second Nordic DK, you can test your application with the Bluetooth Low Energy app in nRF Connect for Desktop. nRF Connect for Desktop is available for Windows, Linux, and macOS.

Note: This method requires a dongle or a second Nordic DK with Bluetooth Low Energy support to be connected to your computer.

The following procedure assumes that you have programmed the Bluetooth Low Energy Peripheral UART example from the nRF5 SDK (examples/ble_peripheral/ble_app_uart) on your development kit. Steps for testing other examples are similar. See the testing instructions for each example in the nRF5 SDK documentation for more information.

1. **Download and install nRF Connect for Desktop.**
2. **Connect the dongle or the second development kit to a USB port of your computer.**
3. **Connect to the kit that runs the ble_app_uart example via CDC-UART.**
4. **Open nRF Connect for Desktop and install the Bluetooth Low Energy app.**
 See **nRF Connect for Desktop** for information about how to install and open apps.
5. **Launch the Bluetooth Low Energy app.**
6. **Select the serial port for the dongle or the development kit that is connected to your computer (not the kit that runs the Peripheral UART example).**
Testing the application

If the device has not been used with the nRF Connect Bluetooth Low Energy app before, you may be asked to update the J-Link firmware and connectivity firmware for the device. You must have the correct connectivity firmware on the nRF SoC to continue. When the nRF SoC has been programmed with the correct firmware, the nRF Connect Bluetooth Low Energy app proceeds to connect to it over USB. When the connection is established, the device appears in the main view.

7. Click **Start scan**.
8. Find the device and click **Connect**.
 The default device name for the Peripheral UART example is "Nordic_UART".
9. Select the **UART RX** characteristic value.
10. Write \[30 31 32 33 34 35 36 37 38 39\] (the hexadecimal value for the string "0123456789") and click **write**.
 The data is transmitted over Bluetooth Low Energy from the app to the development kit that runs the Peripheral UART example. The text "0123456789" is displayed in the terminal that is connected to the kit that runs the Peripheral UART example via UART.
11. Enter any text, for example, **Hello**, in the terminal.
 In nRF Connect, the **UART TX** characteristic value changes to the corresponding ASCII value. For example, the value for **Hello** is \[48 65 6C 6C 6F\].
To actually see what is happening on the development kit while the application is running, you must set up a J-Link debugging session. Keil μVision includes a debugger that you can use to step through your application.

See μVision User's Guide: Debugging for detailed information about how to use the debugger.
Glossary

Development Kit (DK)
A hardware development platform used for application development.

Device Family Pack
A software pack that provides hardware descriptions and startup files for nRF5 Series devices. It is also called nRF5 MDK.

Integrated Development Environment (IDE)
A software application that provides facilities for software development.

Real Time Transfer (RTT)
A proprietary technology for bidirectional communication that supports J-Link devices and ARM-based microcontrollers, developed by SEGGER Microcontroller.

SEGGER Embedded Studio (SES)
A cross-platform IDE for embedded C/C++ programming with support for Nordic Semiconductor devices, produced by SEGGER Microcontroller.

SoftDevice
A wireless protocol stack that complements the nRF5 Series SoCs. Nordic Semiconductor provides these stacks as qualified, precompiled binary files.

Software Development Kit (SDK)
A set of tools used for developing applications for a specific device or operating system.

System on Chip (SoC)
A microchip that integrates all the necessary electronic circuits and components of a computer or other electronic systems on a single integrated circuit.

Target
The goal of an operation, for example, programming a specific image on a device, compiling a specific set of files, or removing previously generated files.

Universal Asynchronous Receiver/Transmitter (UART)
A hardware device for asynchronous serial communication between devices.

Universal Serial Bus (USB)
An industry standard that establishes specifications for cables and connectors and protocols for connection, communication, and power supply between computers, peripheral devices, and other computers.
Recommended reading

In addition to the information in this document, you may need to refer to other documents.

Development Kit User Guides
- nRF52840 DK
- nRF52833 DK
- nRF52 DK
- nRF51 DK

Dongle User Guides
- nRF52840 Dongle
- nRF51 Dongle

Compatibility Matrices
- nRF52840 Compatibility Matrix
- nRF52833 Compatibility Matrix
- nRF52832 Compatibility Matrix
- nRF52811 Compatibility Matrix
- nRF52810 Compatibility Matrix
- nRF51 Series Compatibility Matrix

SDK documentation
- nRF5 SDK v17.1.0

Tools User Guides
- nRF Connect Bluetooth Low Energy
- nRF Command Line Tools
Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may change these terms and conditions at any time without notice.

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor’s documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to this document without notice.

Life support applications

Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

RoHS and REACH statement

Complete hazardous substance reports, material composition reports and latest version of Nordic’s REACH statement can be found on our website www.nordicsemi.com.

Trademarks

All trademarks, service marks, trade names, product names, and logos appearing in this documentation are the property of their respective owners.

Copyright notice

© 2023 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.