Nordic Thingy:91

User Guide v1.0

Contents

	Revision history.	iv
1	Introduction	. 5
2	Kit content.	. 7
_		
	2.1 Downloadable content	
	2.2 Related documentation	. 8
3	Getting started	9
	3.1 Connecting LTE link monitor	10
	5.1 Connecting the link monitor	10
4	Managing Thingy:91 devices	12
	4.1 Updating modem firmware	
	4.2 Updating application firmware	12
	4.3 Updating firmware on nRF52840	13
5	Hardware description	14
	5.1 Block diagram	14
	5.2 Hardware figures	14
	5.3 nRF9160	15
	5.3.1 Antenna tuning	16
	5.3.2 RF measurements	17
	5.3.3 GPS	17
	5.3.4 SIM card	18
	5.4 nRF52840	19
	5.4.1 NFC	19
	5.4.2 USB	
	5.5 Pin maps	20
	5.6 Motion sensors	
	5.7 Environment sensors	25
	5.8 Buzzer	25
	5.9 LEDs and buttons	
	5.9.1 RGB LED	26
	5.9.2 Buttons	26
	5.10 Power supply	26 27
	5.10.1 PMIC	
	5.10.2 Current measurement	
	5.12 Interface	29
	5.12.1 N-MOS transistors	29
	5.12.2 Connectors	30
	5.12.3 Test points	31
6	Regulatory notices.	34
	6.1 FCC regulatory notices	34
	Glossary	35

4418_1336 v1.0 ii

Acronyms and abbreviations.														30	5
Legal notices														3.	7

4418_1336 v1.0 iii

Revision history

Date	Version	Description
August 2019	1.0	First release

4418_1336 v1.0 iv

1 Introduction

The Nordic Thingy:91[™] is a battery-operated prototyping platform for cellular IoT, certified for global operation. It is ideal for rapid development of prototypes for cellular IoT systems and is especially suited for asset tracking applications and environmental monitoring.

Nordic Thingy:91 includes a set of sensors to gather data about its own movements and the surrounding environment. Temperature, humidity, air quality, air pressure, color, and light data can easily be extracted for local or remote analysis. For input, the Nordic Thingy:91 offers a user-programmable button. Visual output is achieved with user-programmable RGB LEDs, while a buzzer can provide audible output. The standard application firmware on Nordic Thingy:91 extracts the data from the different sensors and relays it securely to the nRF Connect for Cloud, where it is displayed in a user-friendly interface. The LEDs can be controlled remotely through the same interface.

The firmware supports concurrent operation with LTE Link Monitor, a tool providing an AT command interface enabling link and network testing. The firmware has been developed using the nRF Connect *Software Development Kit (SDK)*. It is open source and can be leveraged and modified to suit your specific needs. The firmware can be updated and debugged by using an external programmer/debugger, for example with the one on the nRF9160 *DK (Development Kit)*.

Nordic Thingy:91 integrates the nRF9160 *System in Package (SiP)*, supporting LTE-M, NB-IoT and *Global Positioning System (GPS)*, and the nRF52840 *System on Chip (SoC)*, supporting *Bluetooth*[®] Low Energy and *Near Field Communication (NFC)*. Source code for firmware, hardware layout, and schematics are all available for free.

Nordic Thingy:91 has an antenna supporting *GPS*, LTE-M, and NB-IoT that enables it to support a global range of LTE bands. It has two antennas connected to the nRF52840: a 2.4 GHz antenna for Bluetooth LE and an *NFC* antenna. To connect to cellular network out of the box, Nordic Thingy:91 has a nano/4FF SIM card slot and is bundled with an eSIM card from iBasis that comes preloaded with 10 MB.

A 1400 mAh rechargeable Li-Po battery is also part of this prototyping platform giving a smooth transition into prototype field-testing.

Key features of Nordic Thingy:91

- 700-960 MHz + 1710-2200 MHz LTE band support¹
- Certifications: CE, FCC
- LTE-M/NB-IoT/GPS, Bluetooth LE and NFC antennas
- Nano/4FF Subscriber Identity Module (SIM) card slot
- User-programmable button and RGB LEDs
- Environmental sensor for temperature, humidity, air quality, and air pressure
- Color and light sensor
- Low-power and high-G accelerometer
- Buzzer
- 4 x N-MOS transistor for external DC motors or LEDs
- Rechargeable Li-Po battery with 1400 mAh capacity
- · Charging through USB
- PC connection through USB

¹ The application currently enables the following frequency bands: 2, 3, 4, 8, 12, 13, 20, and 28

nRF9160

- Multimode LTE-M/NB-IoT modem
 - GCF certified for global operation
 - 23 dBm output power
 - GPS
 - Power saving features: DRX, eDRX, PSM
 - Coverage enhancement modes
 - Single pin 50 Ω antenna interface
 - Universal Integrated Circuit Card (UICC) interface
- Application processor
 - 64 MHz ARM[®] Cortex[®]-M33 CPU
 - ARM TrustZone[®] for trusted execution
 - ARM CryptoCell 310 for application layer security
 - 1 MB flash and 256 kB RAM
 - 4 x SPI/UART/TWI, PDM, I2S, PWM, ADC

nRF52840 WLCSP

- Bluetooth LE and NFC support
- 64 MHz ARM Cortex-M4F CPU
- 1 MB flash and 256 kB RAM
- USB

Environmental Protection

Waste electrical products should not be disposed of with household waste.

Please recycle where facilities exist. Check with your local authority or retailer for recycling advice.

The battery in this product cannot be easily replaced by users themselves. Batteries should be removed only by qualified professionals due to safety concerns.

2 Kit content

The Nordic Thingy:91 kit consists of hardware and access to software components, hardware design files, applications, and documentation.

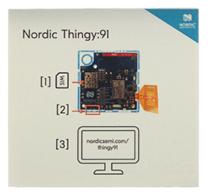


Figure 1: Nordic Thingy:91 hardware content

2.1 Downloadable content

The Nordic Thingy:91 prototyping platform includes firmware source code, documentation, hardware schematics, and layout files.

Firmware

- Application firmware for Nordic Thingy:91
 - Precompiled HEX files
- nRF52840 USB to UART bridge
- nRF9160 modem firmware
- nRF Connect SDK

PC tools

- nRF Connect for Desktop
- SEGGER Embedded Studio (SES)

Web applications

nRF Connect for Cloud

Hardware files

The hardware files can be downloaded from the Nordic Thingy:91 product page.

The zip file and its subdirectories contain the hardware design files for the Nordic Thingy:91. The hardware files for the circuit board are available in the following folder in the hardware files zip package:

```
\Thingy91 - Hardware files x_x_x\PCA20035-Thingy91 Board x_x_x
```

In this folder, you can find the following hardware design files:

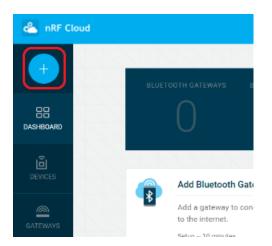
- Altium Designer files
- · Schematics and PCB layout files in PDF format
- Bill of materials
- Production files:
 - Drill files
 - · Assembly drawings
 - · Gerber files
 - Pick-and-place files

2.2 Related documentation

In addition to the information in this document, you may need to consult other Nordic documents.

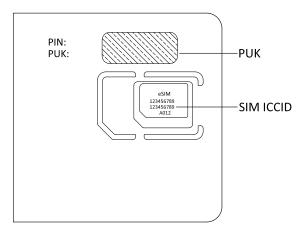
- nRF9160 Product Specification
- nRF52840 Product Specification
- nRF9160 DK
- nRF52840 Development Kit
- nRF9160 Errata
- nRF52840 Errata
- nRF Connect SDK documentation
- nRF Connect for Cloud
- LTE Link Monitor
- nRF91 AT Commands Reference Guide

3 Getting started

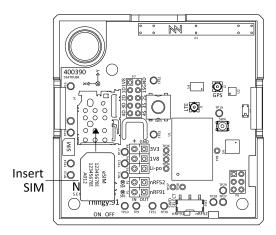

Setting up Nordic Thingy:91 requires completing the following steps.

Before you start:

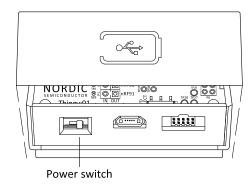
- Unpack Nordic Thingy:91.
- Make sure you have an nRF Connect for Cloud account and sign in to nRF Connect for Cloud.


Once you are signed in, perform the following steps.

1. Add new LTE device.


2. Verify and activate the SIM card.

Input SIM ICCID and Personal Unblocking Key (PUK) from the SIM card, and add personal information.



3. Gently remove the rubber overlay to reveal the power switch and the top of Nordic Thingy:91. Insert the *SIM* card.

4. Once the *SIM* card is inserted, power on Nordic Thingy:91. You will find the power switch next to the micro-USB port.

Wait for orange breathing in the user-programmable LED.

- **5.** Associate the Nordic Thingy:91 to your user account.
 - Enter the IMEI and PIN information that is found on the sticker on the Nordic Thingy:91 PCB. Wait for cyan breathing which means that your Nordic Thingy:91 is associated and connected.
- **6.** To activate *GPS*, go outdoors and press the button for a minimum of 10 s until the user-programmable LED begins breathing purple.
 - Purple breathing: GPS is active and searching
 - Green breathing: GPS has fix

Wait for green breathing in the user-programmable LED which indicates that your Nordic Thingy:91 has GPS fix.

Check that the position data is sent to nRF Connect for Cloud.

3.1 Connecting LTE link monitor

Install and open nRF Connect for Desktop. For instructions, see LTE Link Monitor. To download the latest version, go to the nRF Connect for Desktop product page.

- 1. Install and launch LTE Link Monitor.
- 2. In the bottom-right corner, uncheck the Auto device/port filter option.
- **3.** Connect your Nordic Thingy:91 to your computer using USB. Make sure it is powered on and select the device.

To verify the connection, send AT and observe that the modem responds with OK.

All asset tracker debug output shows up in the terminal view, and you can send AT commands to the modem to try out different settings. For further details on available AT commands, see nRF91 AT Commands Reference Guide.

4 Managing Thingy:91 devices

You can add, remove, connect or disconnect Nordic Thingy:91 devices, and update firmware using nRF Connect for Cloud.

For more information on how to manage devices in nRF Connect for Cloud, see **Devices** in nRF Connect for Cloud.

Firmware updates for modem firmware, application firmware, and the firmware on nRF52840 are described in Updating modem firmware on page 12, Updating application firmware on page 12, and Updating firmware on nRF52840 on page 13. Make sure nrfjprog is installed before proceeding with the firmware updates.

4.1 Updating modem firmware

To update the modem firmware, complete the steps in this section.

- Download the latest modem firmware zip file.
 You can find it under the Compatible Downloads tab that is halfway down the nRF9160 product page.
- 2. Connect Nordic Thingy:91 to the Debug out port on the nRF91 DK board using a 10-pin JTAG cable.

Note: If using nRF91 DK as debugger, make sure VDD IO is set to 1.8 V.

- 3. Power on both devices.
- 4. Start nRF Connect Programmer.
- **5.** Connect to the available serial port.
- 6. Run Erase All on the device.
- 7. Run **Update Modem** and choose the zip file with the latest modem release.
- 8. Click Write.

4.2 Updating application firmware

To update the application firmware, complete the steps in this section.

- **1.** Set the Nordic Thingy:91 SWD selection switch to nRF91.
- **2.** Connect a 10-pin external debugger, for example nRF9160 *DK* or J-Link device supporting ARM Cortex-M33.

Note: If using nRF91 DK as debugger, make sure VDD_IO is set to 1.8 V.

- **3.** Make sure Nordic Thingy:91 is powered on.
- **4.** Flash the application firmware using Programmer in nRF Connect for Desktop or the following command:

```
nrfjprog -f nrf91 --program <hex> --sectorerase -r
```


4.3 Updating firmware on nRF52840

To update the firmware on nRF52840, complete the steps in this section.

- 1. Put the Nordic Thingy:91 SWD selection switch to nRF52.
- **2.** Connect a 10-pin external debugger, for example nRF9160 *DK* or J-Link device supporting ARM Cortex-M4.

Note: If using nRF91 DK as debugger, make sure VDD_IO is set to 1.8 V.

- **3.** Make sure Nordic Thingy:91 is powered on.
- **4.** Flash the nRF52840 firmware using Programmer in nRF Connect for Desktop or the following command:

nrfjprog -f nrf52 --program <hex> --sectorerase -r

5 Hardware description

This chapter focuses on the hardware components of Nordic Thingy:91 with detailed descriptions of the various hardware blocks that are present on the device.

The sensors available in Nordic Thingy:91 are not calibrated in production. Nordic Semiconductor does not specify the accuracy of measurements. Users who want to reuse parts of this design to create measurement devices should conform to documentation of the specific sensors.

5.1 Block diagram

The block diagram represents interactions between hardware components on Nordic Thingy:91.

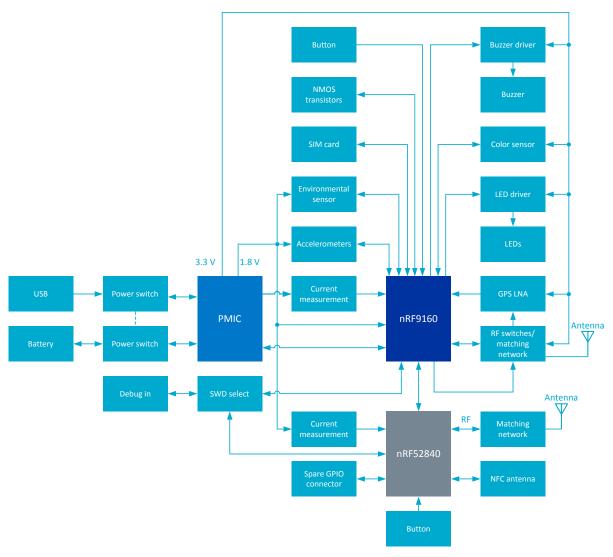


Figure 2: Nordic Thingy:91 hardware block diagram

5.2 Hardware figures

The hardware figures show elements on both sides of the Nordic Thingy:91 PCB.

NORDIC*

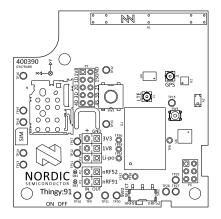


Figure 3: Nordic Thingy:91 PCB, top

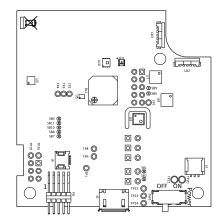


Figure 4: Nordic Thingy:91 PCB, bottom

5.3 nRF9160

The nRF9160 is the main MCU of Nordic Thingy:91. It is a compact, highly integrated *SiP* that makes the latest low-power LTE technology, and advanced processing and security, accessible and easy to use for a wide range of single-device low-power cellular IoT (cloT) designs.

For more information on the SiP, see nRF9160 Product Specification.

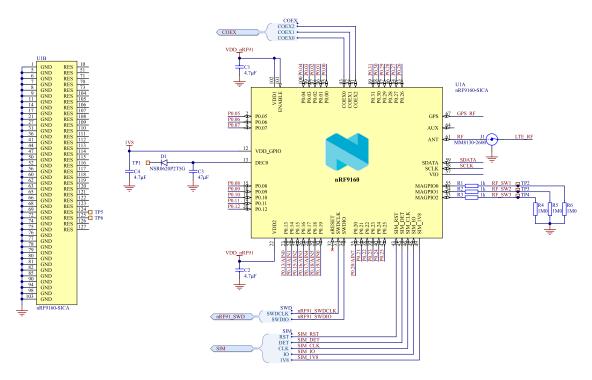


Figure 5: nRF9160 schematic

5.3.1 Antenna tuning

To improve antenna efficiency, especially in the sub-GHz LTE bands, Nordic Thingy:91 has dynamic antenna tuning.

Different tuning components are used for different frequencies. This is achieved by using tuning components between two SP8T RF switches. The switches are automatically controlled by the nRF9160 LTE modem and set to the correct state based on the frequency of operation. Six paths are used for LTE frequency, and one path is used for *GPS* frequency.

RF_SW3	RF_SW2	RF_SW1	State	Band	Frequency		
0	0	0	RF2 - RFC	Not used	Not used		
0	0	1	RF7 - RFC	13U/D, 28D	746 MHz - 803 MHz		
0	1	0	RF5 - RFC	12U/D, 17U/D, 28U	698 MHz - 748 MHz		
				1U/D, 2U/D, 3U/D, 4U/D, 25U/D	1710 MHz - 2200 MHz		
0	1	1	RF3 - RFC	5D, 20U, 26D	824 MHz - 894 MHz		
1	0	0	RF1 - RFC	8U/D	880 MHz - 960 MHz		
1	0	1	RF8 - RFC	5U, 20D, 26U	791 MHz - 849 MHz		
1	1	0	RF6 - RFC	Not used	Not used		
1	1	1	RF4 - RFC	GPS	1574 MHz - 1577 MHz		

Table 1: Antenna tuning bands

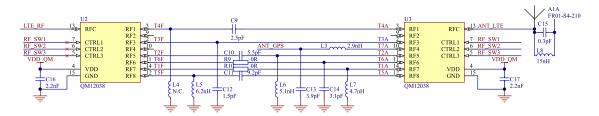


Figure 6: Antenna tuning circuitry schematic

5.3.2 RF measurements

The LTE signals are propagated through a coaxial connector. This makes it possible to perform conducted measurements or attach external antennas.

By default, when no cable is attached, the RF signal is routed to the onboard antenna. When connecting the adapter, the internal switch in the SWF connector will disconnect the onboard antenna and connect the RF signal from the nRF9160 to the adapter.

The connector is of SWF type (Murata part no. MM8130-2600) with an internal switch. An adapter is available (Murata part no. MXHS83QE3000) with a standard SMA connection on the other end for connecting instruments. The adapter is not included in the kit. The insertion loss in the adapter cable is approximately 0.5–1 dB.

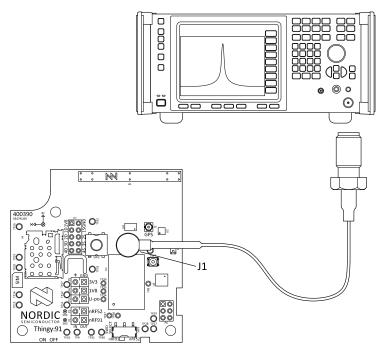


Figure 7: Connecting a spectrum analyzer

5.3.3 GPS

4418 1336 v1.0

The nRF9160 has a dedicated *GPS* port to support global navigation, and the same antenna is used for both LTE and *GPS*. The *GPS* signal is RX only, and there is a low-noise amplifier (LNA) that amplifies the signal before it is fed to the *GPS* RF port on the nRF9160.

The *GPS* signals are propagated through a coaxial connector located between the antenna and the LNA. This makes it possible to attach external antennas. The connector is of SWF type (Murata part no. MM8130-2600) with an internal switch. An adapter is available (Murata part no. MXHS83QE3000) with a standard SMA connection on the other end for connecting instruments. The adapter is not included in the kit. The insertion loss in the adapter cable is approximately 0.5–1 dB.

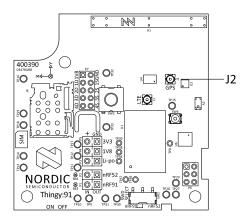


Figure 8: External GPS antenna connector

The LNA enable signal is controlled by the logic circuitry. It is enabled only when the antenna tuning circuitry is set to operate at the *GPS* frequency band. The LNA makes the *GPS* receiver more sensitive to *GPS* signals and less sensitive to interference from other sources nearby.

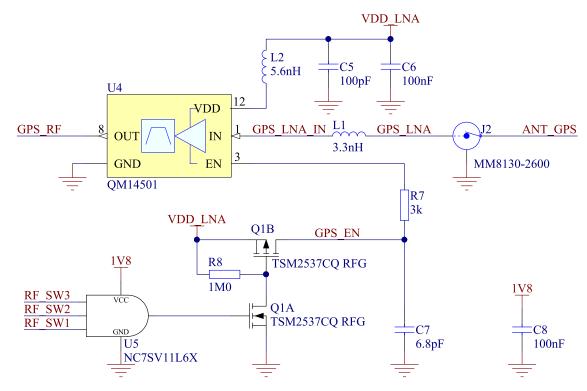


Figure 9: GPS circuit schematic

Note: *GPS* signals do not usually penetrate ceilings or other structures. For best *GPS* performance, Nordic Thingy:91 should be used outside in an open space, far from sources of interference and other structures that may block the signals.

5.3.4 SIM card

Nordic Thingy:91 is equipped with a nano-SIM (4FF) card slot.

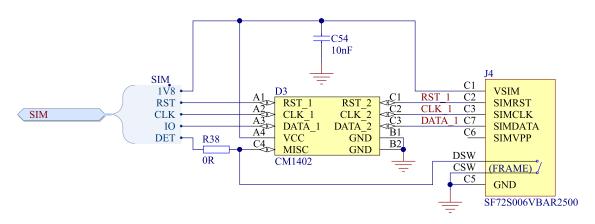


Figure 10: SIM card schematic

5.4 nRF52840

For USB, Bluetooth, and *NFC* connectivity, Nordic Thingy:91 uses a nRF52840 *SoC*. It is a powerful, highly flexible, ultra-low power *SoC* that incorporates a Bluetooth Low Energy radio and a 32-bit ARM Cortex-M4F CPU.

For more information on the SiP, see nRF52840 Product Specification.

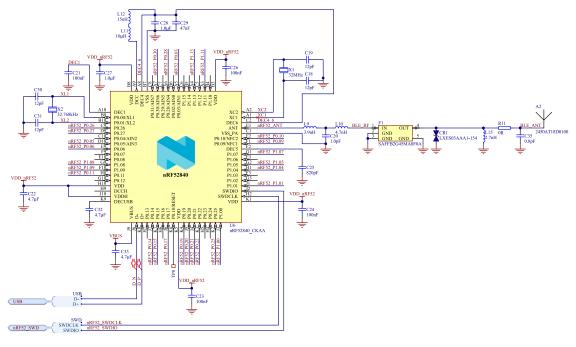


Figure 11: nRF52840 schematic

5.4.1 NFC

Nordic Thingy:91 supports an *NFC* tag. NFC-A listen mode operation is supported on the nRF52840 *SoC*. The *NFC* antenna input is available on connector **J5**.

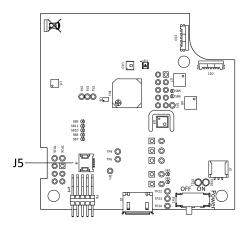


Figure 12: NFC antenna connector

NFC uses two pins, F1 (NFC1) and E2 (NFC2), to connect the antenna. These pins are shared with GPIOs (P0.09 and P0.10), and the PROTECT field in the NFCPINS register in UICR defines the usage of these pins and their protection level against abnormal voltages. The content of the NFCPINS register is reloaded at every reset.

Note: The NFC pins are enabled by default.

The NFC can be disabled and the GPIOs enabled by defining the CONFIG_NFCT_PINS_AS_GPIOS variable in the project settings. The way of doing this depends on the Integrated Development Environment (IDE) or toolchain in use.

- When using SEGGER Embedded Studio, go to Project > Edit Options > Code > Preprocessor >
 Preprocessor Definitions and add the CONFIG NFCT PINS AS GPIOS variable.
- When using Keil, go to **Project** > **Options for Target** > **C/C++** > **Preprocessor Symbols** > **Define** and add the *CONFIG_NFCT_PINS_AS_GPIOS* variable.

5.4.2 USB

The Nordic Thingy:91 USB connector is connected to the USB interface of the nRF52840 *SoC*. This enables PC communication and battery charging.

5.5 Pin maps

The pin assignments for the nRF9160 SiP and nRF52840 SoC are listed in the pin map tables.

1/0	Label	Description
P0.00	SENSE_LED_RED	Red color of the color sensor support LED
P0.01	SENSE_LED_GREEN	Green color of the color sensor support LED
P0.02	SENSE_LED_BLUE	Blue color of the color sensor support LED
P0.03	SCK	SPI clock line
P0.04	MOSI	SPI master output, slave input data line
P0.05	MISO	SPI master input, slave output data line
P0.06	ADXL372_INT1	High-G accelerometer interrupt line
P0.07	ADXL372_CS	High-G accelerometer chip select line

1/0	Label	Description
P0.08	ADXL362_CS	Low-power accelerometer chip select line
P0.09	ADXL362_INT1	Low-power accelerometer interrupt line
P0.10	ADXL3x2_INT2	Accelerometer interrupt line 2, selectable by solder bridge
P0.11	SDA	I ² C data line
P0.12	SCL	I ² C clock line
P0.13	N-MOS_1	Gate of N-MOS transistor externally available
P0.14	N-MOS_2	Gate of N-MOS transistor externally available
P0.15	N-MOS_3	Gate of N-MOS transistor externally available
P0.16	N-MOS_4	Gate of N-MOS transistor externally available
P0.17	ADP_INT	PMIC interrupt line
P0.18	MCU_IF0	nRF52840 interface
P0.19	MCU_IF1	nRF52840 interface
P0.20	MCU_IF2	nRF52840 interface
P0.21	MCU_IF3	nRF52840 interface
P0.22	MCU_IF4	nRF52840 interface
P0.23	MCU_IF5	nRF52840 interface
P0.24	MCU_IF6	nRF52840 interface
P0.25	MCU_IF7	nRF52840 interface
P0.26	BUTTON	Button input
P0.27	BH_INT	Color sensor interrupt line
P0.28	BUZZER	Buzzer PWM signal
P0.29	LIGHTWELL_RED	Red color of the lightwell LEDs
P0.30	LIGHTWELL_GREEN	Green color of the lightwell LEDs
P0.31	LIGHTWELL_BLUE	Blue color of the lightwell LEDs

Table 2: nRF9160 pin map

1/0	Label	Description
P0.00	XL1	Low frequency crystal
P0.01	XL2	Low frequency crystal
P0.02	N.A.	Not used
P0.03	SPARE7	Analog/digital GPIO externally available
P0.04	N.A.	Not used
P0.05	SPARE2	Analog/digital GPIO externally available
P0.06	SPARE1	Digital GPIO externally available
P0.07	N.A.	Not used
P0.08	N.A.	Not used
P0.09	NFC1	Near field communication antenna
P0.10	NFC2	Near field communication antenna
P0.11	MCU_IF0	nRF9160 interface
P0.12	N.A.	Not used
P0.13	N.A.	Not used
P0.14	IF_SWD_IO	nRF9160 SWD interface data line
P0.15	MCU_IF1	nRF9160 interface
P0.16	N.A.	Not used
P0.17	IF_SWD_CTRL	nRF9160 SWD interface control
P0.18	RESET	nRF52840 reset line, available on test point
P0.19	MCU_IF6	nRF9160 interface
P0.20	MCU_IF2	nRF9160 interface
P0.21	MCU_IF3	nRF9160 interface
P0.22	MCU_IF7	nRF9160 interface
P0.23	N.A.	Not used
P0.24	N.A.	Not used
P0.25	MCU_IF5	nRF9160 interface
P0.26	SPARE3	Digital GPIO externally available
P0.27	SPARE4	Digital GPIO externally available
P0.28	SPARE5	Digital GPIO externally available
P0.29	N.A.	Not used
P0.30	SPARE6	Analog/digital GPIO externally available
P0.31	N.A.	Not used
P1.00	MCU_IF4	nRF9160 interface
P1.01	COEX2	nRF9160 COEX interface

1/0	Label	Description
P1.02	N.A.	Not used
P1.03	N.A.	Not used
P1.04	COEX1	nRF9160 COEX interface
P1.05	IF_SWK_CLK	nRF9160 SWD interface clock line
P1.06	N.A.	Not used
P1.07	COEX0	nRF9160 COEX interface
P1.08	SDA	I ² C data line
P1.09	SCL	I ² C clock line
P1.10	N.A.	Not used
P1.11	SPARE8	Digital GPIO externally available
P1.12	N.A.	Not used
P1.13	воот	Boot button
P1.14	N.A.	Not used
P1.15	N.A.	Not used

Table 3: nRF52840 pin map

5.6 Motion sensors

Nordic Thingy:91 includes a low-power accelerometer and a high-G accelerometer.

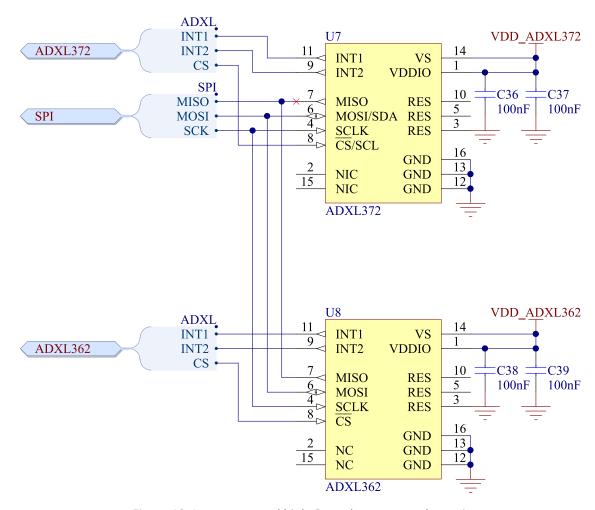


Figure 13: Low-power and high-G accelerometers schematic

When Nordic Thingy:91 is in low-power sleep mode, any user interaction will be detected by the low-power accelerometer which will then wake up the device. The accelerometer has an SPI interface and it can detect motion on three axes. By default, the INT2 line of the accelerometer is not connected to nRF9160. If you want to use the INT2 line, solder **SB6**.

For detecting shocks, Nordic Thingy:91 uses a high-G accelerometer. The accelerometer has an SPI interface, and it can detect motion on three axes. By default, the INT2 line of the accelerometer is not connected to nRF9160. If you want to use the INT2 line, solder **SB5**.

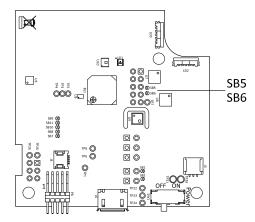


Figure 14: Low-power accelerometer and high-G accelerometer interrupt line 2 selection

5.7 Environment sensors

To monitor its surroundings, Nordic Thingy:91 has a multi-sensor chip that contains several sensors for detecting different environmental properties and a separate color and light sensor.

The multi-sensor chip contains sensors for temperature, humidity, air quality, and air pressure.

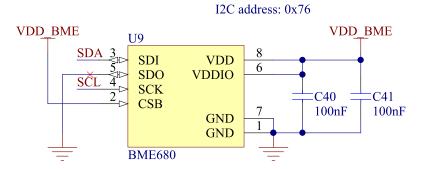


Figure 15: Environment sensor schematic

The color sensor onboard Nordic Thingy:91 senses red, green, and blue light. The sensor faces towards the blue transparent bottom case with light pipes guiding the light towards the sensor. To measure the color on a surface, the color sensor is accompanied with an RGB LED that can illuminate the surface enabling the color sensor to read the color of the reflected light. The color sensor is accessed through I²C (slave address 0x38).

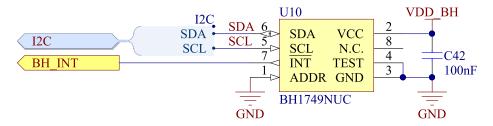


Figure 16: Color sensor schematic

5.8 Buzzer

For audio output, Nordic Thingy:91 has a magnetic buzzer. The buzzer is driven by a transistor using a PWM input.

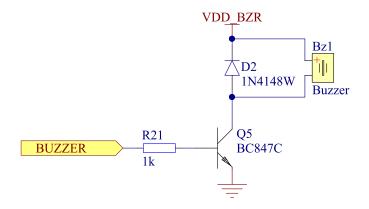


Figure 17: Buzzer schematic

5.9 LEDs and buttons

Nordic Thingy:91 user interface consists of RGB LEDs and two buttons.

5.9.1 RGB LED

Nordic Thingy:91 is equipped with three RGB LEDs.

Two of the LEDs are used to light up the light well and are controlled by the same signals using transistors as switches. The third LED is located near the color sensor and is used as auxiliary light for color measurements.

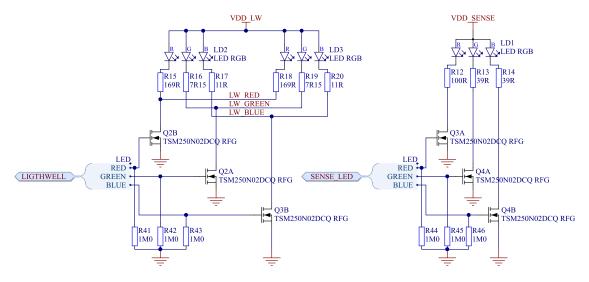


Figure 18: LED schematic

5.9.2 Buttons

Nordic Thingy:91 has two buttons. The one located underneath the Nordic Semiconductor logo is connected to the nRF9160 and used for user input. The second button is connected to the nRF52840 and can be used to activate serial recovery mode of the nRF52840. The button is accessible only when the rubber cover is removed.

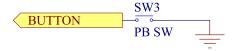


Figure 19: Button schematic

5.10 Power supply

The main power source is a rechargeable lithium polymer (Li-Po) battery. The battery has a nominal capacity of 1400 mAh and can be recharged through USB.

Nordic Thingy:91 has a power switch that physically disconnects the battery and the USB power from the rest of the circuits. This switch must be on for Nordic Thingy:91 to work and charge the battery. When the power switch is in the OFF position, it activates a circuit that drains the 1.8 V power domain.

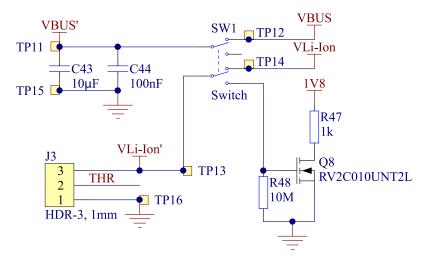


Figure 20: Schematics for battery connector, and the power switch

5.10.1 PMIC

Nordic Thingy:91 uses a power management IC (PMIC) as internal power supply. PMIC includes a battery charger, a fuel gauge and two regulator outputs.

The PMIC has three voltage domain outputs that are used on Nordic Thingy:91:

- VSYS used for the nRF9160 SiP
- One 1.8 V output used as GPIO voltage
- · One 3.3 V output used for analog circuitry

The 1.8 V domain supplies the nRF52840, the accelerometers, the environment sensors, and the *GPIO*s of the nRF9160. This domain must always be on for Nordic Thingy:91 to work.

The 3.3 V domain supplies the LEDs, the color sensor, the buzzer, the RF switches and the *GPS* LNA. This power domain can be powered down to save power when Nordic Thingy:91 is in sleep mode.

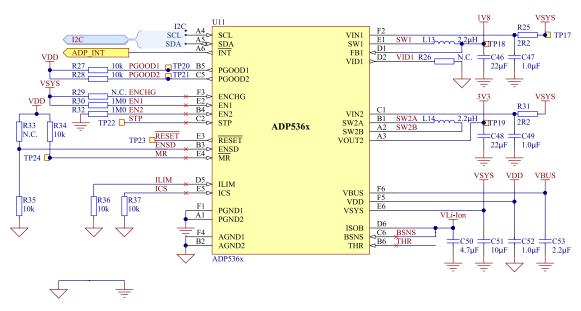


Figure 21: PMIC schematic

5.10.2 Current measurement

It is possible to measure the current flowing to nRF9160 and nRF52840 by cutting the short on SB3 (nRF9160) and/or SB4 (nRF52840) and placing an ampere meter between the terminals of **P1** (nRF9160) and terminals of **P2** (nRF52840).

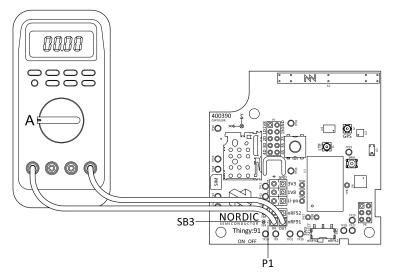


Figure 22: Measuring current to the nRF9160

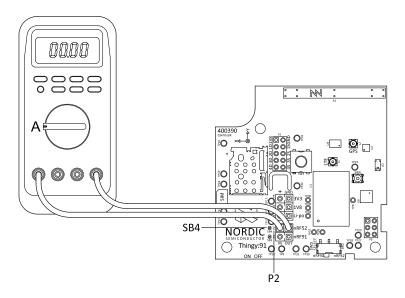


Figure 23: Measuring current to the nRF52840

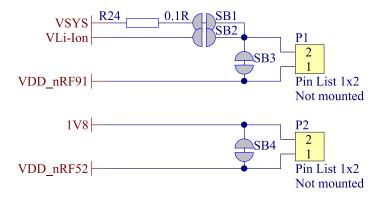


Figure 24: Current measurement schematic

5.11 Programming and debugging interface

Nordic Thingy:91 is equipped with one programming and debugging interface connector (P8) that is shared between the nRF9160 and nRF52840.

NORDIC

The device to be programmed is selected by the SWD SELECT switch (SW2). The selection of device can also be controlled by connecting TP28 to 1.8 V or ground.

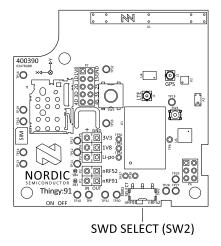


Figure 25: SWD SELECT switch

The SWD interface of the nRF9160 can also be connected to the nRF52840. The enabling of this connection is controlled by the nRF52840.

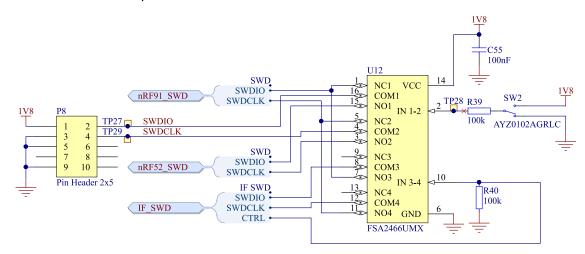


Figure 26: SWD interface and control schematic

5.12 Interface

To enable the user to connect external hardware, Nordic Thingy:91 routes some of the *GPIO*s to connectors or test points and transistors to drive higher currents.

5.12.1 N-MOS transistors

For more flexibility, Nordic Thingy:91 is equipped with four N-MOS transistors that can be used to drive small DC motors or LEDs. The drain and source of the transistors are available on external connectors and the gate is connected directly to the nRF9160.

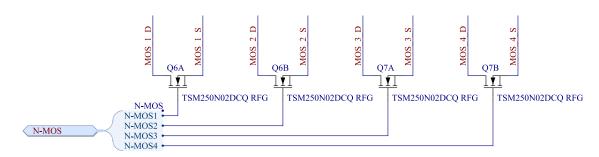


Figure 27: Schematics for the N-MOS transistors

5.12.2 Connectors

In addition to the N-MOS drain and source on **P7**, power domains and extra *GPIO*s can be found on connectors **P3-P6**.

For more information, see Connector pinouts on page 30.

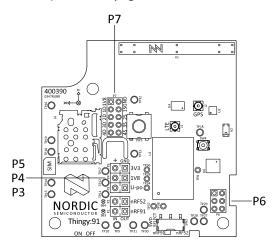


Figure 28: Nordic Thingy:91 external connectors

Figure 29: Interface connectors

5.12.2.1 Connector pinouts

Pin	Signal	Description
1	GND	Ground
2	V _{Li-lon}	Battery voltage

Table 4: Pinout of connector P3

Pin	Signal	Description
1	GND	Ground
2	1V8	Regulated 1.8 V domain

Table 5: Pinout of connector P4

Pin	Signal	Description
1	GND	Ground
2	3V3	Regulated 3.3 V domain

Table 6: Pinout of connector P5

Pin	Signal	Description
1	SPARE1	GPIO of the nRF52840
2	SPARE2	GPIO of the nRF52840
3	SPARE3	GPIO of the nRF52840
4	SPARE4	GPIO of the nRF52840
5	SPARE5	GPIO of the nRF52840
6	SPARE6	GPIO of the nRF52840

Table 7: Pinout of connector P6

Pin	Signal	Description
1	1V8	Regulated 1.8 V domain
2	GND	Ground
3	MOS_1_D	Drain of n-channel MOSFET 1
4	MOS_1_S	Source of n-channel MOSFET 1
5	MOS_2_D	Drain of n-channel MOSFET 2
6	MOS_2_S	Source of n-channel MOSFET 2
7	MOS_3_D	Drain of n-channel MOSFET 3
8	MOS_3_S	Source of n-channel MOSFET 3
9	MOS_4_D	Drain of n-channel MOSFET 4
10	MOS_4_S	Source of n-channel MOSFET 4

Table 8: Pinout of connector P7

5.12.3 Test points

Test point	Location	Signal	Description
TP1	Bottom	N.A.	Reserved
TP2	Bottom	RF_SW1	Bit 0 of RF switch control signals
TP3	Bottom	RF_SW2	Bit 1 of RF switch control signals
TP4	Bottom	RF_SW3	Bit 2 of RF switch control signals
TP5	Bottom	N.A.	Reserved
TP6	Bottom	N.A.	Reserved
TP7	Bottom	nRF91-P0.10	GPIO of the nRF9160
TP8	Тор	nRF52-P0.18/RESET	GPIO/RESET of the nRF52840
TP9	Тор	SCL	I ² C clock line
TP10	Тор	SDA	I ² C data line
TP11	Тор	VBUS'	USB voltage before power switch
TP12	Тор	VBUS	USB voltage after power switch
TP13	Тор	V _{Li-lon'}	Battery voltage before power switch
TP14	Тор	V _{Li-lon}	Battery voltage after power switch
TP15	Тор	GND	Ground
TP16	Тор	GND	Ground
TP17	Тор	VSYS	Internal power domain of PMIC and default nRF9160 power supply
TP18	Тор	1V8	Regulated 1.8 V domain
TP19	Тор	3V3	Regulated 3.3 V domain
TP20	Bottom	ADP_PGOOD1	PMIC output status indication pin 1
TP21	Bottom	ADP_PGOOD2	PMIC output status indication pin 2
TP22	Bottom	ADP_STP	Stop the buck regulator switching of PMIC
TP23	Bottom	ADP_RESET	PMIC reset output
TP24	Bottom	ADP_MR	PMIC manual reset input
TP25	Bottom	SPARE7	GPIO of the nRF52840
TP26	Bottom	SPARE8	GPIO of the nRF52840
TP27	Тор	SWDIO	Programming interface data line
TP28	Тор	SWDSEL	Programming interface target select
TP29	Тор	SWDCLK	Programming interface clock line
TP30	Тор	D-	USB data line
TP31	Тор	D+	USB data line
TP32	Тор	nRF91-P0.13/AIN0	Analog/digital <i>GPIO</i> of the nRF9160, combined with N-MOS1

Test point	Location	Signal	Description
TP33	Тор	nRF91-P0.16/AIN3	Analog/digital <i>GPIO</i> of the nRF9160, combined with N-MOS4
TP34	Тор	SCK	SPI clock line
TP35	Тор	MOSI	SPI master output, slave input data line
TP36	Тор	MISO	SPI master input, slave output data line
TP37	Тор	ADXL372_CS	High-G accelerometer chip select line
TP38	Тор	ADXL362_CS	Low-power accelerometer chip select line

Table 9: Pinout of connector P3

6 Regulatory notices

The following regulatory notices apply to Nordic Thingy:91.

6.1 FCC regulatory notices

Modification statement

Nordic Semiconductor ASA has not approved any changes or modifications to this device by the user. Any changes or modifications could void the user's authority to operate the equipment.

Interference statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Wireless notice

This device complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. The antenna should be installed and operated with minimum distance of 20 cm between the radiator and your body.

FCC Class B digital device notice

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Glossary

DK (Development Kit)

A development platform used for application development.

GPIO

General-Purpose Input/Output

Global Positioning System (GPS)

A satellite-based radio navigation system that provides its users with accurate location and time information over the globe.

Integrated Development Environment (IDE)

A software application that provides facilities for software development.

Near Field Communication (NFC)

A standards-based short-range wireless connectivity technology that enables two electronic devices to establish communication by bringing them close to each other.

Personal Unblocking Key (PUK)

A digit sequence required in 3GPP mobile phones to unlock a *SIM* that has disabled itself after an in correct personal identification number has been entered multiple times.

Software Development Kit (SDK)

A set of tools used for developing applications for a specific device or operating system.

SEGGER Embedded Studio (SES)

A cross-platform *IDE* for embedded C/C++ programming with support for Nordic Semiconductor devices, produced by SEGGER Microcontroller.

Subscriber Identity Module (SIM)

A card used in *User Equipment (UE)* containing data for subscriber identification.

System in Package (SiP)

A number of integrated circuits, often from different technologies, enclosed in a single module that performs as a system or subsystem.

System on Chip (SoC)

A microchip that integrates all the necessary electronic circuits and components of a computer or other electronic systems on a single integrated circuit.

User Equipment (UE)

Any device used by an end-user to communicate. The UE consists of the Mobile Equipment (ME) and the Universal Integrated Circuit Card (UICC).

Universal Integrated Circuit Card (UICC)

A new generation SIM used in UE for ensuring the integrity and security of personal data.

Acronyms and abbreviations

These acronyms and abbreviations are used in this document.

DK

Development Kit

GPIO

General-Purpose Input/Output

GPS

Global Positioning System

IDE

Integrated Development Environment

NFC

Near Field Communication

PUK

Personal Unblocking Key

SDK

Software Development Kit

SES

SEGGER Embedded Studio

SIM

Subscriber Identity Module

SiP

System in Package

SoC

System on Chip

UICC

Universal Integrated Circuit Card

Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may change these terms and conditions at any time without notice.

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor's documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to this document without notice.

Life support applications

Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

RoHS and REACH statement

Complete hazardous substance reports, material composition reports and latest version of Nordic's REACH statement can be found on our website www.nordicsemi.com.

Trademarks

All trademarks, service marks, trade names, product names, and logos appearing in this documentation are the property of their respective owners.

Copyright notice

© 2019 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL

= ISO 9001 =

