S132 SoftDevice

SoftDevice Specification
v7.0

N

NORDIC

SEMICONDUCTOR

4383_110v7.0 /2019-07-05



Contents

Revision history.
1 S132 SoftDevice.
2 Documentation.
3 Product overview.

4 Application programming interface.

4.1 Events - SoftDevice to application .
4.2 Error handling .

5 SoftDevice Manager.

5.1 SoftDevice enable and disable .

5.2 Clock source .

5.3 Power management . .
5.4 Memory isolation and runtime protect|on :

6 System on Chip library.

7 System on Chip resource requirements.

7.1 Hardware peripherals .

7.2 Application signals — software mterrupts
7.3 Programmable peripheral interconnect .
7.4 SVC number ranges . .

7.5 Peripheral runtime protection . o
7.6 External and miscellaneous requirements .

8 Flash memory API

9  Multiprotocol support.

9.1 Non-concurrent multiprotocol implementation .
9.2 Concurrent multiprotocol implementation using the Radlo Tlmeslot API
9.2.1 Request types .
9.2.2 Request priorities .
9.2.3 Timeslot length .
9.2.4 Scheduling .
9.2.5 High-frequency clock conflguratlon
9.2.6 Performance considerations .
9.2.7 Radio Timeslot API . .
9.3 Radio Timeslot API usage scenarios .
9.3.1 Complete session example .
9.3.2 Blocked timeslot scenario .
9.3.3 Canceled timeslot scenario .
9.3.4 Radio Timeslot extension example .

10 Bluetooth Low Energy protocol stack.

10.1 Profile and service support .

4383 110v7.0 i

11
14
15

17

17
17

19

19
19
20
20

23

25

25
26
27
27
28
28

29

32

32
32
32
33
33
33
33
34
34
37
37
38
39
40

42
42

N

NORDIC"

SEMICONDUCTOR



10.2 Bluetooth Low Energy features. . . . . . . . . . . . . . . . . . . . . . . ... 44

10.3 Limitations on procedure concurrency . . . . . . . . . . . . . . . . . . . . ... 49

10.4 Bluetooth Low Energy role configuration. . . . . . . . . . . . . . . . . . . . . . 50

11 Radio Notification. . . . ... ... .. .. ... .. .. .. ... . . 52
11.1 Radio Notification signals . . . . . - 2

11.2 Radio Notification on connection events as a Central ... ... .. ... . 56

11.3 Radio Notification on connection events as a Peripheral . . . . . . o 58

11.4 Radio Notification with concurrent peripheral and central connectionevents. . . . . . . 59

11.5 Radio Notification with Connection Event Length Extension. . . . . . . . . . . . . . 60

11.6 Power amplifier and low noise amplifier control configuration. . . . . . . . . . . . . 61

12 Master boot record and bootloader. . . .~ . . . .. .. . . 62
12.1 Master boot record . . . . . . . . L L 62

12.2 Bootloader . . . . . .82

12.3 Master boot record and SoftDevrce reset procedure S .. . . .. . ... . .... 63

12.4 Master boot record and SoftDevice initialization procedure . . . . . . . . . . . . . . 64

13 SoftDevice information structure. . . . . . . .. .. .. ... ... . . . 65
14 SoftDevice memoryusage. . . . . . . . . . . . .. . . . ... ... ... b6
14.1 Memory resource map and usage . . . . . . . . . . . .. 66
14.1.1 Memory resource requirements . . . . . . . . . . . L L Lo 67

14.2 Attribute table size . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 68

14.3 Role configuration . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 69

14.4 Security configuration . . . . . . . . . . . 69

14.5 Vendor specific UUID counts . . . . . . . . . . . . . . . . . . . . . . .. ... 69

15 Scheduling. .= . . . . ... ... ... .. ... .. .. .. 170
15.1 SoftDevice timing-activities and priorities. . . . . . . . . . . . . . . . . . . . . 70

15.2 Initiator timing . . . . . s 71

15.3 Connection timing as a Central T8

15.4 Scanner timing . . . . . s 75
15.4.1 Primary channel scanner t|mmg Y 4

15.4.2 Secondary channel scanner timing . . . . . . . . . . . . . . . . . . . . .. 76

15.5 Advertiser timing . . . . . L 77

15.6 Peripheral connection setup and connection timing. . . . . . . . . . . . . . ... 78

15.7 Connection timing with Connection Event Length Extension. . . . . . . . . . . . . . 79

15.8 Flash APl timing . . . . . . . . . . . . . . . . . . . . . . . . . . ...... 80

15.9 Timeslot APl timing . . . . . . . . . . 80
15.10 Suggested intervals and windows . . . . . . . . . . . . . . . . . . . . . ... 80

16 Interrupt model and processor availability. . . . .. ... ... . 84
16.1 Exception model . . . . . O <
16.1.1 Interrupt forwarding to the appllcat|on L O 7

16.1.2 Interrupt latency due to System on Chip framework e - 7

16.2 Interrupt priority levels . . . . . e -

16.3 Processor usage patterns and avarlablllty . - V4
16.3.1 Flash API processor usage patterns . . . . . . . . . . . . . . . . . . . ... 87

16.3.2 Radio Timeslot API processor usage patterns. . . . . . . . . . . . . . . . . . 88

16.3.3 Bluetooth Low Energy processor usage patterns. . . . . . . . . . . . . . . . . 89

16.3.4 Interrupt latency when using multiple modulesandroles. . . . . . . . . . . . . 95

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 iii



17 Bluetooth Low Energy data throughput. . . . .~ . . . . . . . . . 96

18 Bluetooth Low Energy power profiles. . . . . . .. ... ... ... 100
18.1 Advertisingevent . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. 100
18.2 Peripheral connectionevent . . . . . . . . . . . . . . . . . . . . ... ... 10
18.3 Scanning event . . . . . . . . . . . . . .. ..o 0102
18.4 Central connectionevent. . . . . . . . . . . . . . . . . . . . . . . ... ..103

19 SoftDevice identification and revision scheme. . = . = . . . . . . 105
19.1 Master boot record distribution and revision scheme . . . . . . . . . . . . . . . . 106
Glossary . . . . . . 107
Acronyms and abbreviations. . . . . . . . . . . . ... . .. ... .. ... 110
Legal notices. . . . . . . . . . . . . . . .. .. . .. .. ... ... 113

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 iv



Revision history

Date

July 2019

Version

7.0

Description
Updated:

¢ Replaced IC specific links with a link to the nRF52 Series
found on Infocenter in Table 1: Additional documentation
on page 14.

¢ Removed peripherals that will not be blocked or restricted
by the SoftDevice from Hardware peripherals on page
25. Base addresses and IDs for peripherals are also
removed. For this information, see relevant product
specification in Table 1: Additional documentation on page
14.

¢ Removed IC specific flash operation timing numbers from
Flash memory APl on page 29. For this information,
see relevant product specification in Table 1: Additional
documentation on page 14.

November 2018

6.2

Updated for SoftDevice S132 version 6.1.1.
Updated:

e Master boot record on page 62 and Bootloader on
page 62 to align with MBR version 2.4.

August 2018

6.1

Updated for SoftDevice $S132 version 6.1.0. Some additional
corrections.

Added:

e Paragraph about extended RC calibration in Clock source
on page 19.

¢ Paragraph about throughput calculations in Bluetooth Low
Energy data throughput on page 96.

¢ Documentation related to LE Extended Advertising in:

¢ Flash memory APl on page 29.
e Table 19: LL features in the Bluetooth Low Energy stack
on page 48.
¢ Radio Notification on page 52.
e Scheduling on page 70.
¢ Bluetooth Low Energy power profiles on page 100.
e Glossary.
e Acronyms and abbreviations on page 110.

Updated:

e List of key features and applications in S132 SoftDevice on
page 11.

e Programmable peripheral interconnect on page 27
now references the hardware resource APl instead of
listing the PPl channel and group ranges.

4383_110v7.0

N

NORDIC"

SEMICONDUCTOR



https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52.html
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52.html

Revision history

Date

Version

Description

PA pin timings in Power amplifier and low noise amplifier
control configuration on page 61.

Figure 22: MBR, SoftDevice, and bootloader architecture
on page 63 to align with the layout of the bootloader
from nRF5 SDK.

Processor availability and interrupt processing time for
all Bluetooth® Low Energy roles in Bluetooth Low Energy
processor usage patterns on page 89.

March 2018

6.0

Updated for SoftDevice $S132 version 6.0.0. Some additional
corrections.

Added:

Application control of MTU size, packet length, and PHY in
Table 13: API features in the Bluetooth Low Energy stack
on page 45

Quality of Service and Channel map for Observer role in
Table 20: Proprietary features in the Bluetooth Low Energy
stack on page 49

Updated:

List of key features in S132 SoftDevice on page 11.

Profile and service support on page 42. Updated

the list of profiles and services currently adopted by the
Bluetooth Special Interest Group.

Table 19: LL features in the Bluetooth Low Energy stack on
page 48.

Table 20: Proprietary features in the Bluetooth Low Energy
stack on page 49.

Bluetooth Low Energy role configuration on page 50.
SoftDevice information structure on page 65

SoftDevice memory usage on page 66: The flash

memory and minimum RAM requirements of the
SoftDevice are no longer provided in this document. See
the release notes for this information.

SoftDevice timing-activities and priorities on page 70.

December 2017

5.1

Updated for SoftDevice S132 version 5.1.0. Some additional
corrections.

Updated:

Table 5: Allocation of software interrupt vectors to
SoftDevice signals on page 27. Two of the SWI

priorities were changed in the S132 5.0.0 SoftDevice, but
were not updated accordingly in the $132 SDS v5.0. 5132
SDS v5.1 has the correct interrupt priorities for both the
$132 5.1.0 and 5.0.0 SoftDevices.

SoftDevice memory usage on page 66: Reduced
SoftDevice RAM requirements.

Interrupt latency for open peripheral interrupt in Table 32:
Additional latency due to SoftDevice and MBR forwarding
interrupts on page 85

4383_110v7.0

N

NORDIC"

SEMICONDUCTOR

Vi



Revision history

Date

Version

Description

¢ Removed references to the Bandwidth Configuration API.
This was removed from the SoftDevice in version 4.0.0.

e Table 3: Hardware access type definitions on page 25,
Table 4: Hardware peripherals with limited availability to
the application on page 25

June 2017

5.0

Updated for SoftDevice $S132 version 5.0.0. The changes
are mostly related to the added support for Bluetooth 5.0
features.

Added:

e Table 18: L2CAP features in the Bluetooth Low Energy
stack on page 47

Updated:

e Table 19: LL features in the Bluetooth Low Energy stack on
page 48

e Suggested intervals and windows on page 80

e Table 39: Data throughput for a single connection with 23
byte ATT MTU on page 96

e Table 40: Data throughput for a single connection with 247
byte ATT MTU on page 98

e Bluetooth Low Energy power profiles on page 100

May 2017

4.1

Updated for SoftDevice $S132 version 4.0.3
Updated:

e Table 5: Allocation of software interrupt vectors to
SoftDevice signals on page 27

e List of interrupt levels in Interrupt priority levels on page
85

e Figure 51: Exception model on page 86

e Typical processing time calculations in sections Bluetooth
Low Energy Advertiser (Broadcaster) processor usage on
page 89, Bluetooth Low Energy peripheral connection
processor usage on page 90, Bluetooth Low Energy
scanner and initiator processor usage on page 92, and
Bluetooth Low Energy central connection processor usage
on page 93

March 2017

4.0

Corresponding to SoftDevice S132 version 4.0.2. The updates
are mostly related to notation changes, performance changes,
and changes following the increased number of possible
concurrent connections and the improved configuration of
connections in S132 version 4.0.2.

Updated:

e List of key features in S132 SoftDevice on page 11.

e Table 5: Allocation of software interrupt vectors to
SoftDevice signals on page 27, Table 15: GATT features
in the Bluetooth Low Energy stack on page 46, Table
19: LL features in the Bluetooth Low Energy stack on
page 48, Table 22: Radio Notification notation and

4383_110v7.0

N

NORDIC"

SEMICONDUCTOR

Vil



Revision history

Date

Version

Description

terminology on page 53, Table 23: Bluetooth Low
Energy Radio Notification timing ranges on page 54,
Table 30: Scheduling priorities on page 71, Table 31:
Peripheral role timing ranges on page 79, Table 35:
Processor usage when advertising on page 90, Table
36: Processor usage when connected on page 92, Table
37: Processor usage for scanning or initiating on page
93, Table 38: Processor usage latency when connected
on page 95, Table 39: Data throughput for a single
connection with 23 byte ATT MTU on page 96, Table
40: Data throughput for a single connection with 247 byte
ATT MTU on page 98, Table 41: Data throughput for up
to 8 connections on page 99,

¢ Section Bluetooth Low Energy role configuration on page
50.

¢ Notation for timing constants in text and figures in Radio
Notification on page 52 and Scheduling on page 70.

e Section Role configuration on page 69.

e Section SoftDevice timing-activities and priorities on page
70.

e Section Connection timing as a Central on page 73.

e Section Suggested intervals and windows on page 80.

December 2016

3.1

Corresponding to SoftDevice S132 versions 3.0.0 and 3.1.0.
Updated:

e Events - SoftDevice to Application Section in Events -
SoftDevice to application on page 17.

e Table 3: Hardware access type definitions on page 25,
Table 4: Hardware peripherals with limited availability to
the application on page 25, and Table 5: Allocation of
software interrupt vectors to SoftDevice signals on page
27.

e Section Advertiser timing on page 77.

e Figures of SoftDevice interrupt priority levels and
processor usage patterns in Interrupt model and processor
availability on page 84.

¢ Introductory text in Bluetooth Low Energy data throughput
on page 96.

Added:

e Section High-frequency clock configuration on page 33.

August 2016

3.0

Corresponding to SoftDevice S132 version 3.0.0.
Updated:

e List of key features in S132 SoftDevice on page 11.
e Bluetooth Low Energy protocol stack on page 42,
adding:

e MTU exchange procedure and Write long characteristic
values in Table 15: GATT features in the Bluetooth Low

4383_110v7.0

Energy stack on page 46.
> I

NORDIC"

SEMICONDUCTOR

viii



Revision history

Date Version Description

e Numeric comparison in Table 16: SM features in the
Bluetooth Low Energy stack on page 47.
e Configurable ATT_MTU size in Table 17: ATT features in
the Bluetooth Low Energy stack on page 47.
¢ Data packet length extension, LE Ping, Privacy, and
Extended scanner filter policies in Table 19: LL features
in the Bluetooth Low Energy stack on page 48.
e Radio Notification signals on page 52 with an
additional section on Radio Notification with Connection
Event Length Extension.
e SoftDevice information structure on page 65.

e SoftDevice memory usage on page 66: updated
SoftDevice flash memory and RAM requirements.

e Scheduling on page 70 with an additional section
on connection timing with Connection Event Length
Extension, Connection timing with Connection Event
Length Extension on page 79.

e Bluetooth Low Energy data throughput on page 96:

¢ Updated figures of SoftDevice data throughput for
single link on Table 39: Data throughput for a single
connection with 23 byte ATT MTU on page 96,

e Added table for maximum achievable single-link
throughput: Table 39: Data throughput for a single
connection with 23 byte ATT MTU on page 96.

April 2016 2.0 Corresponding to SoftDevice S132 version 2.0.0. The
SDS revision 1.0 is intentionally skipped to align with the
SoftDevice version and with the S130 SDS version.

Updated:

e SoftDevice Manager on page 19. Added
documentation on (previously in Appendix A):

¢ Clock source
e Power management
¢ Memory isolation and runtime protection

¢ Hardware peripherals on page 25.

e Programmable peripheral interconnect on page 27.
Documented PPl channel changes.

e Flash memory APl on page 29. Documented changes
and new numbers.

¢ Profile and service support on page 42. Updated
the list of profiles and services currently adopted by the
Bluetooth Special Interest Group.

e Radio Notification on page 52.

e Master boot record on page 62.

e Scheduling on page 70 (previously Chapter 14:
Multilink scheduling).

¢ Interrupt model and processor availability on page 84.
Updated section to align with the new SoftDevice priority
level structure.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 ix



Revision history

Date

Version

Description

e Bluetooth Low Energy data throughput on page 96.
Updated documentation with new numbers.

Added:

e Application programming interface on page 17
(previously in Appendix A). Now also including section
Error handling on page 17.

¢ Bluetooth Low Energy role configuration on page 50.

e Power amplifier and low noise amplifier control
configuration on page 61.

e SoftDevice memory usage on page 66 (Memory
resource map and usage on page 66 and Attribute
table size on page 68 previously in Chapter 13: System
on Chip resource requirements; Call Stack and Heap
information previously in Appendix A can be found under
Memory resource requirements on page 67).

¢ SoftDevice timing-activities and priorities on page 70.

¢ Timeslot API timing on page 80.

Several chapters have been restructured, relocated and
revised. Appendix A is removed.

June 2015 0.5

Preliminary release.

Previous versions

PDF files for relevant previous versions are available here:

S132 SoftDevice Specification v6.2
S$132 SoftDevice Specification v6.1
S$132 SoftDevice Specification v6.0
S$132 SoftDevice Specification v5.1
S$132 SoftDevice Specification v5.0
S132 SoftDevice Specification v4.1
S$132 SoftDevice Specification v4.0
S$132 SoftDevice Specification v3.1
S132 SoftDevice Specification v3.0
S$132 SoftDevice Specification v2.0
S$132 SoftDevice Specification v0.5

4383_110v7.0

~

NORDIC"

SEMICONDUCTOR



https://infocenter.nordicsemi.com/pdf/S132_SDS_v6.2.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v6.1.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v6.0.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v5.1.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v5.0.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v4.1.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v4.0.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v3.1.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v3.0.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v2.0.pdf
https://infocenter.nordicsemi.com/pdf/S132_SDS_v0.5.pdf

S132 SoftDevice

The S132 SoftDevice is a Bluetooth Low Energy Central and Peripheral protocol stack solution. It supports
up to twenty connections with an additional observer and a broadcaster role all running concurrently. The
S132 SoftDevice integrates a Bluetooth Low Energy Controller and Host, and provides a full and flexible API
for building Bluetooth Low Energy nRF52 System on Chip solutions.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 11



S$132 SoftDevice

Key features

¢ Bluetooth 5 compliant single-mode Bluetooth Low
Energy protocol stack

e Concurrent central, observer, peripheral, and
broadcaster roles with up to 20 concurrent
connections along with one Observer and one
Broadcaster

e Extended Advertising support

¢ Advertising and scanning up to 255 bytes of
advertising data in an advertising event

¢ Advertising, scanning, and connecting on all
supported PHYs

¢ Anonymous advertising

¢ Configurable number of connections and
connection properties

¢ Configurable attribute table size
e Custom UUID support
¢ Link layer supporting LE 1M PHY and LE 2M PHY

e LL Privacy, including for the Extended Advertising
modes

e LE Data Packet Length Extension

e ATT and SM protocols

e L2CAP with LE Credit-based Flow Control
e LE Secure Connections pairing model

e GATT and GAP APIs

e GATT Client and Server

¢ Configurable ATT MTU

¢ Complementary nRF5 SDK including Bluetooth
profiles and example applications

e Master Boot Record for over-the-air device firmware
update

¢ SoftDevice, application, and bootloader can be
updated separately

¢ Memory isolation between the application and the
protocol stack for robustness and security

¢ Thread-safe supervisor-call based API
¢ Asynchronous, event-driven behavior
¢ No RTOS dependency

e Any RTOS can be used
¢ No link-time dependencies

« Standard ARM® Cortex®-M4 project configuration
for application development

e Support for concurrent and non-concurrent
multiprotocol operation

e Concurrent with the Bluetooth stack using Radio
Timeslot API

¢ Alternate protocol stack in application space

4383 110v7.0 12

Applications

Sports and fitness devices

e Sports watches

e Bike computers

¢ Fitness machines
Personal area networks

¢ Health and fitness sensor and
monitoring devices

¢ Medical devices

¢ Key fobs and wrist watches

Home automation

AirFuel wireless charging

Remote control toys

Computer peripherals and 1/0 devices

e Mice

e Keyboards

e Multi-touch trackpads
Interactive entertainment devices

e Remote controls
e Gaming controllers

N

NORDIC"

SEMICONDUCTOR



S$132 SoftDevice

e Support for control of external power amplifiers and
low noise amplifiers

¢ Quality of service module with channel noise
monitoring

4383_110v7.0 13 .

NORDIC

SEMICONDUCTOR



2 Documentation

Additional recommended reading for developing applications using the SoftDevice on an nRF52 System
on Chip (SoC) includes the product specification, errata, compatibility matrix, and the Bluetooth Core
Specification.

Documentation Description

nRF52 Series found on Infocenter * Product Specification: Contains a description
of the hardware, peripherals, and electrical
specifications specific to the Integrated Circuit
(IC)

¢ Errata: Contains information on anomalies
related to the IC

e Compatibility Matrix: Contains information
on the compatibility between IC revisions,
SoftDevices and SoftDevice Specifications,
Software Development Kit (SDK)s, development
kits, documentation, and Qualified Design
Identification (QDID)s

Bluetooth Core Specification The Bluetooth Core Specification version 5.0,
Volumes 1, 3, 4, and 6, describe Bluetooth
terminology which is used throughout the
SoftDevice Specification

Table 1: Additional documentation

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 14


https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52.html
https://www.bluetooth.com/specifications/bluetooth-core-specification

3

Product overview

The S132 SoftDevice is a precompiled and linked binary image implementing a Bluetooth 5 Low Energy
protocol stack for the nRF52 Series of SoCs.

See the relevant compatibility matrix in Table 1: Additional documentation on page 14 for SoftDevice/IC
compatibility information.

-
Application — Profiles and Services

(.
. )

nRF API Protocol API (SV Calls)

g )
nRF SoftDevice
4 N [ )
App-Specific SoC Library
peripheral
drivers
./
Bluetooth® Low Energy Protocol Stack
)
SoftDevice
Manager

\_ /L J
o J )
-

CMSIS Master Boot Record
\ )
~
NRF5x HW

&

Figure 1: SoC application with the SoftDevice

Figure 1: SoC application with the SoftDevice on page 15 shows the nRF52 series software
architecture. It includes the standard ARM Cortex Microcontroller Software Interface Standard (CMSIS)
interface for nRF52 hardware, the MBR, profile and application code, application specific peripheral
drivers, and a firmware module identified as a SoftDevice.

A SoftDevice consists of three main components:

e SoC Library: implementation and nRF Application Programming Interface (API) for shared hardware
resource management (application coexistence)

e SoftDevice Manager (SDM): implementation and nRF AP/ for SoftDevice management (enabling/
disabling the SoftDevice, etc.)

¢ Bluetooth 5 Low Energy protocol stack: implementation of protocol stack and AP/

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 15



Product overview

The APl is a set of standard C language functions and data types provided as a series of header files that
give the application complete compiler and linker independence from the SoftDevice implementation. For
more information, see Application programming interface on page 17.

The SoftDevice enables the application developer to develop their code as a standard ARM Cortex -M4
project without having the need to integrate with proprietary IC vendor software frameworks. This means
that any ARM Cortex -M4-compatible toolchain can be used to develop Bluetooth Low Energy applications
with the SoftDevice.

The SoftDevice can be programmed onto compatible nRF52 Series ICs during both development and
production.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 16



Application programming interface

The SoftDevice APl is available to applications as a C programming language interface based on Supervisor
Call (SVC)s and defined in a set of header files.

All variants of SoftDevices with the same version number are APl compatible (see SoftDevice identification
and revision scheme on page 105). In addition to a Protocol AP/ enabling wireless applications, there is
an nRF AP/ that exposes the functionality of both the SDM and the SoC library.

Note: When the SoftDevice is disabled, only a subset of the SoftDevice APIs is available to the
application (see SoftDevice API). For more information about enabling and disabling the SoftDevice,
see SoftDevice enable and disable on page 19.

SVCs are software triggered interrupts conforming to a procedure call standard for parameter passing

and return values. Each SoftDevice API call triggers a SVC interrupt. The SoftDevice SVC interrupt handler
locates the correct SoftDevice function, allowing applications to compile without any AP/ function address
information at compile time. This removes the need for the application to link the SoftDevice. The

header files contain all information required for the application to invoke the AP/ functions with standard
programming language prototypes. This SVC interface makes SoftDevice AP/ calls thread-safe: they can be
invoked from the application's different priority levels without additional synchronization mechanisms.

Note: SoftDevice API functions can only be called from a lower interrupt priority level (higher
numerical value for the priority level) than the SVC priority. For more information, see Interrupt
priority levels on page 85.

4.1 Events - SoftDevice to application

Software triggered interrupts in a reserved IRQ are used to signal events from the SoftDevice to the
application. The application is then responsible for handling the interrupt and for invoking the relevant
SoftDevice functions to obtain the event data.

The application must respond to and process the SoftDevice events to ensure the SoftDevice functions
properly. If events for Bluetooth Low Energy control procedures are not serviced, the procedures may time
out and result in a link disconnection. If data received by the SoftDevice from the peer is not fetched in
time, the internal SoftDevice data buffers may become full and no more data can be received.

For further details on how to implement the handling of these events, see the nRF5 Software
Development Kit (nRF5 SDK) documentation.

4.2 Error handling

All SoftDevice API functions return a 32-bit error code. The application must check this error code to
confirm whether a SoftDevice AP/ function call was successful.

Unrecoverable failures (faults) detected by the SoftDevice will be reported to the application by a
registered, fault handling callback function. A pointer to the fault handler must be provided by the
application upon SoftDevice initialization. The fault handler is then used to notify of unrecoverable errors,
and the type of error is indicated as a parameter to the fault handler.

The following types of faults can be reported to the application through the fault handler:

e SoftDevice assertions

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 17


https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/s132.html
https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_nrf5_latest.html

Application programming interface

e Attempts by the application to perform unallowed memory accesses, either against SoftDevice
memory protection rules or to protected peripheral configuration registers at runtime

The fault handler callback is invoked by the SoftDevice in HardFault context with all interrupts disabled.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 18



SoftDevice Manager

The SDM API allows the application to manage the SoftDevice on a top level. It controls the SoftDevice
state and configures the behavior of certain SoftDevice core functionality.

When enabling the SoftDevice, the SDM configures the following:

e The LFCLK source. See Clock source on page 19.
¢ The interrupt management. See SoftDevice enable and disable on page 19.
¢ The embedded protocol stack.

In addition, it enables the SoftDevice RAM and peripheral protection. See Memory isolation and runtime
protection on page 20.

Detailed documentation of the SDM APl is made available with the SDKs.

5.1 SoftDevice enable and disable

When the SoftDevice is not enabled, the Protocol AP/ and parts of the SoC library AP/ are not available to
the application.

When the SoftDevice is not enabled, most of the SoC's resources are available to the application. However,
the following restrictions apply:

e SVC numbers 0x10 to OxFF are reserved.
o SoftDevice program (flash) memory is reserved.

¢ Afew bytes of RAM are reserved. See Memory resource map and usage on page 66 for more
details.

Once the SoftDevice has been enabled, more restrictions apply:

¢ Some RAM will be reserved. See Memory isolation and runtime protection on page 20 for more
details.

¢ Some peripherals will be reserved. See Hardware peripherals on page 25 for more details.
¢ Some of the peripherals that are reserved will have a SoC library interface.

¢ Interrupts from the reserved SoftDevice peripherals will not be forwarded to the application. See
Interrupt forwarding to the application on page 84 for more details.

e The reserved peripherals are reset upon SoftDevice disable.
e nrf nvic functions must be used instead of CMSISNVIC functions for safe use of the SoftDevice.

¢ SoftDevice activity in high priority levels may interrupt the application, increasing the maximum
interrupt latency. For more information, see Interrupt model and processor availability on page 84.

5.2 Clock source

The SoftDevice can use one of two available LFCLK sources: the internal RC Oscillator, or external Crystal
Oscillator.

The application must provide the selected clock source and some clock source characteristics, such as
accuracy, when it enables the SoftDevice. The SDM is responsible for configuring the LFCLK source and for
keeping it calibrated when the RC oscillator is the selected clock source.

If the SoftDevice is configured with the internal RC oscillator clock option, periodic clock calibration is
required to adjust the RC oscillator frequency. Additional calibration is required for temperature changes

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 19



SoftDevice Manager

of more than 0.5°C. See the relevant product specification (Table 1: Additional documentation on page

14) for more information. The SoftDevice will perform this function automatically. The application may
choose how often the SoftDevice will make a measurement to detect temperature change. The application
must consider how frequently significant temperature changes are expected to occur in the intended
environment of the end product. It is recommended to use a temperature polling interval of 4 seconds,
and to force clock calibration every second interval (.rc_ctiv=16, .rc_temp ctiv=2).

Extended RC calibration is enabled by default when the RC oscillator is used. In this feature, the SoftDevice
as a peripheral can detect if the clock has drifted and then calibrate the RC oscillator if necessary. This
calibration is in addition to the periodic calibration. If using only peripheral connections, the periodic
calibration can then be configured with a much longer interval as the peripheral will be able to detect

and adjust automatically to clock drift and calibrate when required. When the Extended RC calibration is
enabled, the SoftDevice as a peripheral will try to increase the receive window if two consecutive packets
are not received. If it turns out that the packets were missed due to clock drift, the RC oscillator calibration
is started. Extended RC calibration can be disabled using the BLE option API.

5.3 Power management

The SoftDevice implements a simple to use SoftDevice Power API for optimized power management.

The application must use this APl when the SoftDevice is enabled to ensure correct function. When the
SoftDevice is disabled, the application must use the hardware abstraction (CMSIS) interfaces for power
management directly.

When waiting for application events using the AP/, the CPU goes to an IDLE state whenever the SoftDevice
is not using the CPU, and interrupts handled directly by the SoftDevice do not wake the application.
Application interrupts will wake the application as expected. When going to system OFF, the AP/ ensures
the SoftDevice services are stopped before powering down.

5.4 Memory isolation and runtime protection

The SoftDevice data memory and peripherals can be sandboxed and runtime protected to prevent the
application from interfering with the SoftDevice execution, ensuring robust and predictable performance.

Sandboxing1 and runtime protection can allow memory access violations to be detected at development
time. This ensures that developed applications will not inadvertently interfere with the correct functioning
of the SoftDevice.

Sandboxing is enabled by default when the SoftDevice is enabled, and disabled when the SoftDevice is
disabled. When enabled, SoftDevice RAM and peripheral registers are protected against write access by
the application. The application will have read access to SoftDevice RAM and peripheral registers.

The program memory is divided into two regions at compile time. The SoftDevice Flash Region is located
between addresses 0x00000000 and APP_CODE_BASE - 1 and is occupied by the SoftDevice. The
Application Flash Region is located between the addresses APP  CODE_BASE and the last valid address in
the flash memory and is available to the application.

The RAM is split into two regions, which are defined at runtime, when the SoftDevice is enabled. The
SoftDevice RAM Region is located between the addresses 0x20000000 and APP_RAM BASE - 1landis
used by the SoftDevice. The Application RAM Region is located between the addresses APP RAM BASE
and the top of RAM and is available to the application.

The following figure presents an overview of the regions.

1 A sandbox is a set of memory access restrictions imposed on the application.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 20



SoftDevice Manager

Program Memory RAM
0x0000 0000 + 0x2000 0000 +
<size of flash> <size of RAM>
Application
RAM Region
Application APP—RAM—BAE
Flash Region .
SoftDevice
RAM Region
0x2000 0000
APP_CODE_BASE
-
SoftDevice
Flash Region
0x0000 0000

Figure 2: Memory region designation

The SoftDevice uses a fixed amount of flash (program) memory. By contrast, the size of the SoftDevice
RAM Region depends on whether the SoftDevice is enabled or not, and on the selected Bluetooth Low
Energy protocol stack configuration. See Role configuration on page 69 for more details.

The amount of flash and RAM available to the application is determined by region size (kilobytes or
bytes) and the APP  CODE BASE and APP_RAM BASE addresses which are the base addresses

of the application code and RAM, respectively. The application code must be located between

APP CODE_BASE and <size of flash>. The application variables must be allocated in an area inside
the Application RAM Region, located between APP RAM BASE and <size of RAM>. This area shall
not overlap with the allocated RAM space for the call stack and heap, which is also located inside the
Application RAM Region.

The program code address range of an example application:
APP CODE BASE < Program < <size of flash>

RAM address range of example application assuming call stack and heap location as shown in Figure 24:
Memory resource map on page 67:

APP RAM BASE < RAM < (0x2000 0000 + <size of RAM>) - (<Call Stack> + <Heap>)

Sandboxing protects the SoftDevice RAM Region so that it cannot be written to by the application at
runtime. Violation of sandboxing rules, for example, an attempt to write to the protected SoftDevice
memory, will result in the triggering of a fault (unrecoverable error handled by the application). See Error
handling on page 17 for more information.

When the SoftDevice is disabled, all RAM, with the exception of a few bytes, is available to the application.
See Memory resource map and usage on page 66 for more details. When the SoftDevice is enabled,
RAM up to APP_RAM BASE will be used by the SoftDevice and will be write protected.

> I

NORDIC"

SEMICONDUCTOR

4383 110v7.0 21



SoftDevice Manager

The typical location of the call stack for an application using the SoftDevice is in the upper part of the
Application RAM Region, so the application can place its variables from the end of the SoftDevice RAM
Region (APP_RAM BASE) to the beginning of the call stack space.

Note:

¢ The location of the call stack is communicated to the SoftDevice through the contents of the
Main Stack Pointer (MSP) register.

¢ Do not change the value of MSP dynamically (i.e. never set the MSP register directly).

e The RAM located in the SoftDevice RAM Region will be overwritten once the SoftDevice is
enabled.

e The SoftDevice RAM Region will not be cleared or restored to default values after disabling the
SoftDevice, so the application must treat the contents of the region as uninitialized memory.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 22



System on Chip library

The coexistence of the Application and SoftDevice with safe sharing of common SoC resources is ensured

by the SoC library.

The features described in the following table are implemented by the SoC library and can be used for
accessing the shared hardware resources when the SoftDevice is enabled.

Feature Description
Mutex The SoftDevice implements atomic mutex acquire and release operations that
are safe for the application to use. Use this mutex to avoid disabling global
interrupts in the application, because disabling global interrupts will interfere
with the SoftDevice and may lead to dropped packets or lost connections.
NVIC Wrapper functions for the CMSIS NVIC functions provided by ARM.
Note: To ensure reliable usage of the SoftDevice you must use the
wrapper functions when the SoftDevice is enabled.
Rand Provides random numbers from the hardware random number generator.
Power Access to POWER block configuration:
e Access to RESETREAS register
e Set power modes
e Configure power fail comparator
¢ Control RAM block power
e Use general purpose retention register
e Configure DC/DC converter state:
e DISABLED
e ENABLED
Clock Access to CLOCK block configuration. Allows the HFCLK Crystal Oscillator

source to be requested by the application.

Wait for event

Simple power management call for the application to use to enter a sleep or
idle state and wait for an application event.

PPI

Configuration interface for Programmable Peripheral Interconnect (PPI)

channels and groups reserved for an application.2

Radio Timeslot API

Schedule other radio protocol activity, or periods of radio inactivity. For more
information, see Concurrent multiprotocol implementation using the Radio
Timeslot APl on page 32.

Radio Notification

Configure Radio Notification signals on ACTIVE and/or nACTIVE. See Radio
Notification signals on page 52.

Block Encrypt (ECB)

Safe use of 128-bit AES encrypt HW accelerator

Event API

Fetch asynchronous events generated by the SoC library.

4383 110v7.0

N

NORDIC"

SEMICONDUCTOR

23




System on Chip library

Flash memory API Application access to flash write, erase, and protect. Can be safely used during

all protocol stack states.? See Flash memory APl on page 29.

Temperature Application access to the temperature sensor

Table 2: SoC features

2 This can also be used when the SoftDevice is disabled.

4383_110v7.0 24 .

NORDIC

SEMICONDUCTOR



System on Chip resource
requirements

This section describes how the SoftDevice, including the MBR, uses the SoC resources. The SoftDevice
requirements are shown for when the SoftDevice is enabled and disabled.

The SoftDevice and MBR (see Master boot record and bootloader on page 62) are designed to be

installed on the nRF SoC in the lower part of the code memory space. After a reset, the MBR will use some
RAM to store state information. When the SoftDevice is enabled, it uses resources on the SoC including
RAM and hardware peripherals like the radio. For the amount of RAM required by the SoftDevice, see
SoftDevice memory usage on page 66.

7.1 Hardware peripherals

The SoftDevice requires certain hardware peripherals to function correctly. The availability of these
hardware peripherals to the application depends on whether the SoftDevice is enabled or disabled.

The access types listed in the following table are used to categorize the availability of the hardware
peripherals to the application. The application has access to most hardware peripherals. The exceptions
are listed in Table 4: Hardware peripherals with limited availability to the application on page 25.

Access type Definition

Restricted The hardware peripheral is used by the SoftDevice and is outside
the application sandbox. When the SoftDevice is enabled, it shall
only be accessed through the SoftDevice API. Through this AP/, the
application has limited access.

Blocked The hardware peripheral is used by the SoftDevice and is outside the
application sandbox.

The application has no access. Interrupts from blocked peripherals
are forwarded to the SoftDevice by the MBR and are not available to
the application, even inside a Radio Timeslot API timeslot.

Open The hardware peripheral is not used by the SoftDevice.

The application has full access.

Table 3: Hardware access type definitions

Instance Access Access
SoftDevice enabled SoftDevice disabled
CLOCK Restricted Open
POWER Restricted Open
BPROT Restricted Open
4383_110v7.0 25 N

NORDIC"

SEMICONDUCTOR



System on Chip resource requirements

Instance Access Access

SoftDevice enabled SoftDevice disabled

RADIO Blocked? Open

TIMERO Blocked? Open

RTCO Blocked Open

TEMP Restricted Open

RNG Restricted Open

ECB Restricted Open

ccm Blocked* Open

AAR Blocked* Open

EGU1/SWI1/Radio Notification Restricted’ Open

EGU5/SWI5 Blocked Open

NVMC Restricted Open

MWU Restricted® Open
FICR Blocked Blocked

UICR Restricted Open

NVIC Restricted’ Open

Table 4: Hardware peripherals with limited availability to the application

Note: Some of the peripherals in this table are not present on all devices. For a complete
overview of the peripherals on a device, see the relevant product specification (Table 1: Additional

documentation on page 14).

7.2 Application signals — software interrupts

Software interrupts are used by the SoftDevice to signal events to the application.

The peripheral is available to the application through the Radio Timeslot API. See Concurrent

multiprotocol implementation using the Radio Timeslot APl on page 32.

The peripheral is available to the application during a Radio Timeslot API timeslot. See Concurrent

multiprotocol implementation using the Radio Timeslot APl on page 32.

Blocked only when Radio Notification signal is enabled. See Application signals — software interrupts
on page 26 for SWI allocation.
See sections Memory isolation and runtime protection on page 20 and Peripheral runtime protection

on page 28 for limitations on the use of MWU when the SoftDevice is enabled.

Not protected. For robust system function, the application program must comply with the restriction

and use the SoftDevice NVIC API for configuration when the SoftDevice is enabled.

4383_110v7.0

26

N

NORDIC"

SEMICONDUCTOR



System on Chip resource requirements

SWi Peripheral ID Interrupt SoftDevice Signal
priority

0 20 - Unused by the SoftDevice and available to the
application.

1 21 6 Radio Notification. The interrupt priority can
optionally be configured through the SoftDevice
NVIC API.

2 22 6 SoftDevice Event Notification. The interrupt

priority can optionally be configured through the
SoftDevice NVIC API. The interrupt will be set to
PENDING state by the SoftDevice on SoftDevice
Event Notification, but also the application may
set it to PENDING state.

3 23 - Unused by the SoftDevice and available to the
application.

4 24 - Reserved for future use.

5 25 4 SoftDevice processing - not user configurable.

Table 5: Allocation of software interrupt vectors to SoftDevice signals

7.3 Programmable peripheral interconnect

A set of PPl channels and groups may be configured using the PPI API in the SoC library.

This APl is available both when the SoftDevice is disabled and when it is enabled. It is also possible to
configure the PPIs using the CMSIS directly when the SoftDevice is disabled.

When the SoftDevice is disabled, all PPI channels and groups are available to the application.

When the SoftDevice is enabled, some of the PP/ channels and groups are reserved by the SoftDevice.
The application must therefore not change the configuration of these PPl channels or groups when the
SoftDevice is enabled. Failing to comply with this will cause the SoftDevice to not operate properly.

The PPI channels and groups that are reserved by the SoftDevice when enabled are defined in
nrf soc.h.

7.4 SVC number ranges

Application programs and SoftDevices use certain SVC numbers.
The table below shows which SVC numbers an application program can use and which numbers are used

by the SoftDevice.

Note: The SVC number allocation does not change with the state of the SoftDevice (enabled or
disabled).

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 27



System on Chip resource requirements

SVC number allocation SoftDevice enabled SoftDevice disabled
Application 0x00-0xOF 0x00-0xOF
SoftDevice 0x10-OxFF 0x10-0OxFF

Table 6: SVC number allocation

7.5 Peripheral runtime protection

To prevent the application from accidentally disrupting the protocol stack in any way, the application
sandbox also protects the peripherals used by the SoftDevice.

Protected peripheral registers are readable by the application. An attempt to perform a write to a
protected peripheral register will result in a Hard Fault. See Error handling on page 17 for more details
on faults due to unallowed memory access. The peripherals are only protected when the SoftDevice is
enabled; otherwise, they are available to the application. See Table 4: Hardware peripherals with limited
availability to the application on page 25 for an overview of the peripherals with access restrictions

due to the SoftDevice.

7.6 External and miscellaneous requirements

For correct operation of the SoftDevice, it is a requirement that the crystal oscillator (HFXO) startup time is
less than 1.5 ms.

The external clock crystal and other related components must be chosen accordingly. Data for the crystal
oscillator input can be found in the relevant SoC product specification (Table 1: Additional documentation
on page 14).

When the SoftDevice is enabled, the SEVONPEND flag in the SCR register of the CPU shall only be changed
from main or low interrupt level (priority not higher than 4). Otherwise, the behavior of the SoftDevice is
undefined and the SoftDevice might malfunction.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 28



3

Flash memory API

The SoC flash memory API provides the application with flash write, flash erase, and flash protect support
through the SoftDevice. Asynchronous flash memory operations can be safely performed during active
Bluetooth Low Energy connections using the Flash memory AP/ of the SoC library.

The flash memory accesses are scheduled to not disturb radio events. See Flash API timing on page 80
for details. If the protocol radio events are in a critical state, flash memory accesses may be delayed for

a long period resulting in a time-out event. In this case, NRF_EVT_FLASH_OPERATION_ERROR will be
returned in the application event handler. If this happens, retry the flash memory operation. Examples of
typical critical phases of radio events include connection setup, connection update, disconnection, and
impending supervision time-out.

The probability of successfully accessing the flash memory decreases with increasing scheduler activity
(i.e. radio activity and timeslot activity). With long connection intervals, there will be a higher probability
of accessing flash memory successfully. Use the guidelines in Table 7: Behavior with Bluetooth Low Energy
traffic and concurrent flash write/erase on page 29 to improve the probability of flash operation

success.

A flash write must be made in chunks smaller or equal to the flash page size. Make flash writes in as small
chunks as possible to increase the probability of success and reduce the chance of affecting Bluetooth
Low Energy performance. The table below assumes a flash write size of four bytes. LE 1M PHY is assumed
unless another PHY is specified.

The time required to do a flash memory operation using the flash memory API depends on which IC is
being used. For the exact timing numbers, see the relevant product specification (Table 1: Additional
documentation on page 14). In the table below, a flash page erase is assumed to last for 90 ms.

Bluetooth Low Energy activity Flash write/erase

High Duty cycle directed advertising Does not allow flash operation while advertising
is active (maximum 1.28 seconds). In this case,
retrying flash operation will only succeed after the
advertising activity has finished.

All possible Bluetooth Low Energy roles running Low to medium probability of flash operation
concurrently (connections as a Central, Peripheral, |success

Advertiser, and Scanner - . .
) Probability of success increases with:

¢ Configurations with shorter event lengths
e Lower data traffic

¢ Increase in connection interval and advertiser
interval

e Decrease in scan window
* Increase in scan interval

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 29



Flash memory API

Bluetooth Low Energy activity

Extended scanner

Flash write/erase

Medium to high probability of flash operation
success.

When receiving extended advertising events with
secondary channel packets, the scanner cannot
choose when the secondary channel timing-events
will occur.

Probability of success increases with:
e Lower secondary channel traffic
Probability of success may increase with:

e Decrease in scan window
* Increase in scan interval

Extended scannable advertiser with the following
configurations:

e 255 bytes of scan response data
e Advertising interval > 100 ms
¢ 3 primary advertising channels

High probability of flash operation success

8 high bandwidth connections as a Central
1 high bandwidth connection as a Peripheral
All active connections fulfill the following criteria:

e Supervision time-out > 6 x connection interval
e Connection interval 2 150 ms

e All central connections have the same
connection interval

High probability of flash write success

Medium probability of flash erase success (High
probability if the connection interval is > 240 ms)

8 high bandwidth connections as a Central
All active connections fulfill the following criteria:

e Supervision time-out > 6 x connection interval
e Connection interval 2 150 ms

e All connections have the same connection
interval

High probability of flash operation success

8 low bandwidth connections as a Central
All active connections fulfill the following criteria:

e Supervision time-out > 6 x connection interval
e Connection interval 2 110 ms

¢ All connections have the same connection
interval

High probability of flash operation success

1 connection as a Peripheral

e Supervision time-out > 6 x connection interval
e Connection interval 2 25 ms

The active connection fulfills the following criteria:

High probability of flash operation success

4383 110v7.0

30

N

NORDIC"

SEMICONDUCTOR



Flash memory API

Bluetooth Low Energy activity
4 connections as a Peripheral
All active connections fulfill the following criteria:

e Supervision time-out > 6 x connection interval
¢ Connection interval 2 115 ms

Flash write/erase

Medium to high probability of flash operation
success.

The scheduling of connections as Peripheral is
done by the peer devices. The Peripheral does
not influence this scheduling, which means that
the connection events may collide and result in
flash operations being blocked. With multiple
connections as Peripheral, choose connection
intervals and connection event lengths in a way
that leaves enough free time to handle collisions
and other activities.

Connectable Undirected Advertising
Nonconnectable Advertising
Scannable Advertising

Connectable Low Duty Cycle Directed Advertising

High probability of flash operation success

No Bluetooth Low Energy activity

Flash operation will always succeed

Table 7: Behavior with Bluetooth Low Energy traffic and concurrent flash write/erase

4383 110v7.0

31

N

NORDIC"

SEMICONDUCTOR




9 Multiprotocol support

Multiprotocol support allows developers to implement their own 2.4 GHz proprietary protocol in the
application both when the SoftDevice is not in use (non-concurrent) and while the SoftDevice protocol
stack is in use (concurrent). For concurrent multiprotocol implementations, the Radio Timeslot API allows
the application protocol to safely schedule radio usage between Bluetooth Low Energy events.

9.1 Non-concurrent multiprotocol implementation

For non-concurrent operation, a proprietary 2.4 GHz protocol can be implemented in the application
program area and can access all hardware resources when the SoftDevice is disabled. The SoftDevice
may be disabled and enabled without resetting the application in order to switch between a proprietary
protocol stack and Bluetooth communication.

9.2 Concurrent multiprotocol implementation using the
Radio Timeslot API

The Radio Timeslot API allows the nRF52 device to be part of a network using the SoftDevice protocol
stack and an alternative network of wireless devices at the same time.

The Radio Timeslot (or, simply Timeslot) feature gives the application access to the radio and other
restricted peripherals during defined time intervals, denoted as timeslots. The Timeslot feature achieves
this by cooperatively scheduling the application's use of these peripherals with those of the SoftDevice.
Using this feature, the application can run other radio protocols (third party, custom, or proprietary
protocols running from application space) concurrently with the internal protocol stack of the SoftDevice.
It can also be used to suppress SoftDevice radio activity and to reserve guaranteed time for application
activities with hard timing requirements, which cannot be met by using the SoC Radio Notifications.

The Timeslot feature is part of the SoC library. The feature works by having the SoftDevice time-multiplex
access to peripherals between the application and itself. Through the SoC API, the application can open a
Timeslot session and request timeslots. When a Timeslot request is granted, the application has exclusive
and real-time access to the normally blocked RADIO, TIMERO, CCM, and AAR peripherals and can use
these freely for the duration (length) of the timeslot. See Table 3: Hardware access type definitions on
page 25 and Table 4: Hardware peripherals with limited availability to the application on page 25.

9.2.1 Request types

There are two types of Radio Timeslot requests, earliest possible Timeslot requests and normal Timeslot
requests.

Timeslots may be requested as earliest possible, in which case the timeslot occurs at the first available

opportunity. In the request, the application can limit how far into the future the timeslot may be placed.

Note: The first request in a session must always be earliest possible to create the timing reference
point for later timeslots.

Timeslots may also be requested at a given time (normal). In this case, the application specifies in the
request when the timeslot should start and the time is measured from the start of the previous timeslot.

The application may also request to extend an ongoing timeslot. Extension requests may be repeated,
prolonging the timeslot even further.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 32



Multiprotocol support

Timeslots requested as earliest possible are useful for single timeslots and for non-periodic or non-timed
activity. Timeslots requested at a given time relative to the previous timeslot are useful for periodic and
timed activities, for example, a periodic proprietary radio protocol. Timeslot extension may be used to
secure as much continuous radio time as possible for the application, for example, running an “always on”
radio listener.

9.2.2 Request priorities

Radio Timeslots can be requested at either high or normal priority, indicating how important it is for the
application to access the specified peripherals. A Timeslot request can only be blocked or canceled due to
an overlapping SoftDevice activity that has a higher scheduling priority.

9.2.3 Timeslot length

A Radio Timeslot is requested for a given length. Ongoing timeslots have the possibility to be extended.

The length of the timeslot is specified by the application in the Timeslot request and ranges from 100 ps
to 100 ms. Longer continuous timeslots can be achieved by requesting to extend the current timeslot. A
timeslot may be extended multiple times, as long as its duration does not extend beyond the time limits
set by other SoftDevice activities, and up to a maximum length of 128 seconds.

9.2.4 Scheduling

The SoftDevice includes a scheduler which manages radio timeslots and priorities and sets up timers to
grant timeslots.

Whether a Timeslot request is granted and access to the peripherals is given is determined by the
following factors:

¢ The time the request is made

¢ The exact time in the future the timeslot is requested for
¢ The desired priority level of the request

¢ The length of the requested timeslot

Timeslot API timing on page 80 explains how timeslots are scheduled. Timeslots requested at high
priority will cancel other activities scheduled at lower priorities in case of a collision. Requests for short
timeslots have a higher probability of succeeding than requests for longer timeslots because shorter
timeslots are easier to fit into the schedule.

Note: Radio Notification signals behave the same way for timeslots requested through the Radio
Timeslot interface as for SoftDevice internal activities. See section Radio Notification signals on
page 52 for more information. If Radio Notifications are enabled, Radio Timeslots will be
notified.

9.2.5 High-frequency clock configuration

The application can request the SoftDevice to guarantee that the HFCLK source is set to the external
crystal and that it is ramped up and stable before the start of the timeslot.

If the application requests the SoftDevice to have the external high-frequency crystal ready by the start of
the timeslot, the SoftDevice will handle all the enabling and disabling of the crystal. The application does
not need to disable the crystal at the end of the timeslot. The SoftDevice will disable the crystal after the
end of the timeslot unless the SoftDevice needs to use it within a short period of time after the end of the
timeslot. In that case, the SoftDevice will leave the crystal running.

If the application does not request the SoftDevice to have the external high-frequency crystal ready by the
start of the timeslot, then the application must not use the RADIO during the timeslot and must take into
consideration that the HFCLK source is inaccurate during the timeslot unless the application itself makes

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 33



Multiprotocol support

sure that the crystal is ramped up and ready at the start of the timeslot. If the application starts the crystal
before or during the timeslot, it is the responsibility of the application to disable it again.

9.2.6 Performance considerations

The Radio Timeslot APl shares core peripherals with the SoftDevice, and application-requested timeslots
are scheduled along with other SoftDevice activities. Therefore, the use of the Timeslot feature may
influence the performance of the SoftDevice.

The configuration of the SoftDevice should be considered when using the Radio Timeslot API. A
configuration which uses more radio time for native protocol operation will reduce the available time for
serving timeslots and result in a higher risk of scheduling conflicts.

All Timeslot requests should use the lowest priority to minimize disturbances to other activities. See
Table 30: Scheduling priorities on page 71 for the scheduling priorities of the different activities. The
high priority should only be used when required, such as for running a radio protocol with certain timing
requirements that are not met by using normal priority. By using the highest priority available to the
Timeslot API, non-critical SoftDevice radio protocol traffic may be affected. The SoftDevice radio protocol
has access to higher priority levels than the application. These levels will be used for important radio
activity, for instance when the device is about to lose a connection.

See Scheduling on page 70 for more information on how priorities work together with other modules
like the Bluetooth Low Energy protocol stack, the Flash API etc.

Timeslots should be kept as short as possible in order to minimize the impact on the overall performance
of the device. Requesting a short timeslot will make it easier for the scheduler to fit in between other
scheduled activities. The timeslot may later be extended. This will not affect other sessions, as it is only
possible to extend a timeslot if the extended time is unreserved.

It is important to ensure that a timeslot has completed its outstanding operations before the time it is
scheduled to end (based on its starting time and requested length); otherwise, the SoftDevice behavior is
undefined and may result in an unrecoverable fault.

9.2.7 Radio Timeslot API

This section describes the calls, events, signals, and return actions of the Radio Timeslot API.

A Timeslot session is opened and closed using AP/ calls. Within a session, there is a AP/ call to request
timeslots. For communication back to the application, the Timeslot feature will generate events and
signals. The generated events are handled by the normal application event handler, while the Timeslot
signals must be handled by a callback function (the signal handler) provided by the application. The signal
handler can also return actions to the SoftDevice. Within a timeslot, only the signal handler is used.

Note: The API calls, events, and signals are only given by their full names in the tables where they
are listed the first time. Elsewhere, only the last part of the name is used.

9.2.7.1 APl calls
The S132 SoftDevice provides APl functions for handling radio timeslots.

The API functions are defined in the following table.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 34



Multiprotocol support

API call

sd radio session open()

Description

Open a radio timeslot session.

sd radio_ session close()

Close a radio timeslot session.

sd radio request ()

Request a radio timeslot.

9.2.7.2 Radio Timeslot events

Table 8: API calls

Events come from the SoftDevice scheduler and are used for Radio Timeslot session management.

Events are received in the application event handler callback function, which will typically be run in an
application interrupt. For more information, see Events - SoftDevice to application on page 17. The events

are defined in the following table.

Event

NRF_EVT_RADIO_SESSION_IDLE

Description

Session status: The current timeslot session has no
remaining scheduled timeslots.

NRF_EVT_RADIO_SESSION_CLOSED

Session status: The timeslot session is closed and
all acquired resources are released.

NRF_EVT_RADIO_BLOCKED

Timeslot status: The last requested timeslot could
not be scheduled, due to a collision with already
scheduled activity or for other reasons.

NRF_EVT_RADIO_CANCELED

Timeslot status: The scheduled timeslot was
canceled due to overlapping activity of higher
priority.

NRF_EVT_RADIO_SIGNAL_
CALLBACK_INVALID_RETURN

Signal handler: The last signal handler return value
contained invalid parameters and the timeslot was
ended.

9.2.7.3 Radio Timeslot signals

Table 9: Radio Timeslot events

Signals come from the peripherals and arrive within a Radio Timeslot.

Signals are received in a signal handler callback function that the application must provide. The signal
handler runs in interrupt priority level 0, which is the highest priority in the system, see section Interrupt

priority levels on page 85.

4383_110v7.0

35

N

NORDIC"

SEMICONDUCTOR




Multiprotocol support

Signal Description

NRF_RADIO_CALLBACK_SIGNAL_TYPE_START Start of the timeslot. The application now
has exclusive access to the peripherals for
the full length of the timeslot.

NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO Radio interrupt. For more information,
see chapter 2.4 GHz radio (RADIO) in the
nRF52 Reference Manual.

NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMERO Timer interrupt. For more information,
see chapter Timer/counter (TIMER) in the
nRF52 Reference Manual.

NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED | The latest extend action succeeded.

NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED The latest extend action failed.

Table 10: Radio Timeslot signals

9.2.7.4 Signal handler return actions

The return value from the application signal handler to the SoftDevice contains an action.

Signal Description

NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE The timeslot processing is not
complete. The SoftDevice will take no
action.

NRF_RADIO_SIGNAL_CALLBACK_ACTION_END The current timeslot has ended. The
SoftDevice can now resume other
activities.

NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END |The current timeslot has ended. The
SoftDevice is requested to schedule a
new timeslot, after which it can resume
other activities.

NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND The SoftDevice is requested to extend
the ongoing timeslot.

Table 11: Signal handler action return values

9.2.7.5 Ending a timeslot in time

The application is responsible for keeping track of timing within the Radio Timeslot and for ensuring that
the application’s use of the peripherals does not last for longer than the granted timeslot length.

For these purposes, the application is granted access to the TIMERO peripheral for the length of the
timeslot. This timer is started from zero by the SoftDevice at the start of the timeslot and is configured to
run at 1 MHz. The recommended practice is to set up a timer interrupt that expires before the timeslot
expires, with enough time left of the timeslot to do any clean-up actions before the timeslot ends. Such
a timer interrupt can also be used to request an extension of the timeslot, but there must still be enough
time to clean up if the extension is not granted.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 36




Multiprotocol support

Note: The scheduler uses the LFCLK source for time calculations when scheduling events. If the
application uses a TIMER (sourced from the current HFCLK source) to calculate and signal the end
of a timeslot, it must account for the possible clock drift between the HFCLK source and the LFCLK
source.

9.2.7.6 Signal handler considerations

The signal handler runs at interrupt priority level 0, which is the highest priority. Therefore, it cannot be
interrupted by any other activity.

Since the signal handler runs at a higher interrupt priority (lower numerical value for the priority level)
than the SVC calls (see Interrupt priority levels on page 85), SVC calls are not available in the signal
handler.

Note: It is a requirement that processing in the signal handler does not exceed the granted time
of the timeslot. If it does, the behavior of the SoftDevice is undefined and the SoftDevice may
malfunction.

The signal handler may be called several times during a timeslot. It is recommended to use the signal
handler only for real time signal handling. When the application has handled the signal, it can exit the
signal handler and wait for the next signal if it wants to do other (less time critical) processing at lower
interrupt priority (higher numerical value for the priority level) while waiting.

9.3 Radio Timeslot API usage scenarios

In this section, several Radio Timeslot API usage scenarios are provided with descriptions of the sequence
of events within them.

9.3.1 Complete session example

This section describes a complete Radio Timeslot session.

Figure 3: Complete Radio Timeslot session example on page 38 shows a complete Timeslot session.
In this case, only timeslot requests from the application are being scheduled, and there is no SoftDevice
activity.

At start, the application calls the AP/ to open a session and to request a first timeslot (which must be of
type earliest possible). The SoftDevice schedules the timeslot. At the start of the timeslot, the SoftDevice
calls the application signal handler with the START signal. After this, the application is in control and has
access to the peripherals. The application will then typically set up TIMERO to expire before the end of the
timeslot to get a signal indicating that the timeslot is about to end. In the last signal in the timeslot, the
application uses the signal handler return action to request a new timeslot 100 ms after the first.

All subsequent timeslots are similar. The signal handler is called with the START signal at the start of the
timeslot. The application then has control, but must arrange for a signal to come towards the end of the
timeslot. As the return value for the last signal in the timeslot, the signal handler requests a new timeslot
using the REQUEST_AND_END action.

Eventually, the application does not require the radio any more. Therefore, at the last signal in the last
timeslot, the application returns END from the signal handler. The SoftDevice then sends an IDLE event to
the application event handler. The application calls session_close, and the SoftDevice sends the CLOSED
event. The session has now ended.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 37



Multiprotocol support

100 ms SS 50 ms—sS—
k<—10 msﬁ 5 ms%| K<——10 msﬁ

Timeslots
; (( («
Timeslot AP —f—¢—% ) i » i i i
| | | | | |
| | | | | |
I a¢ I 94 I I
0 I \Eg I \Eg I I
g | \D\‘g | Iq'® } }
=4 | | | IZ Il 0 =| o
— [ Zun g [ [ f=yd
= el 'y NEEES: gl g | '<8E x| 4 Al o wl g 0H
3l 5 58 RIS S - Iy 5| 12 |z g 8
J§ =z | de e = 1z | 153 = 1z 1 2| gl ©
slosl gl vilgT® g g v| 8u? g 18 vig gl gl %
5 52 B : :
[ | 1ER : :
=]
g | | | | | |
Signal handler \ \ & (« L& \ (« \ B L&
(LowerStack) ) )
Event handler I I \J A
(App(L)) » »
i (( (¢
Main ) 9

Figure 3: Complete Radio Timeslot session example

LowerStack denotes the interrupt level for SoftDevice AP/ calls and non-time-critical processing, and
App(L) denotes the selected low-priority application interrupt level. See Interrupt priority levels on page
85 for the available interrupt levels.

9.3.2 Blocked timeslot scenario

Radio Timeslot requests may be blocked due to an overlap with activities already scheduled by the
SoftDevice.

Figure 4: Blocked timeslot scenario on page 39 shows a situation in the middle of a session where a
requested timeslot cannot be scheduled. At the end of the first timeslot illustrated here, the application
signal handler returns a REQUEST_AND_END action to request a new timeslot. The new timeslot cannot
be scheduled as requested because of a collision with an already scheduled SoftDevice activity. The
application is notified about this by a BLOCKED event to the application event handler. The application
then makes a new request for a later point in time. This request succeeds (it does not collide with
anything), and a new timeslot is eventually scheduled.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 38



Multiprotocol support

( (« | N
200 ms i 3y 100 ms
( N|
100 ms )} |
Already scheduled
Timeslots SoftDevice activity
of equal or higher
priority.
Timeslot APl — — (¢ (¢ —-
A A SR ) A A
I ] ] |
I [ 1 l
I 19 € | | g g
| | [] | 1Z
\ = ol £ RN IRk
el iz 2| S |12 20
Zl 12 Al g 8 El 1z Al a8
<] ol g »l = - <
Bl 12 gg o 8 2l 1% |5 E
2 1z 153 @ § g| 19 oW
c| 16 v 13, 2 B 5 1S vl 13%
5| 15 e 5 = CIE Iy @
3 1© g 3 % ! =3
| 1S E o | =
I 12 g g | 18 §
| A | A
| | | |
Signal handler y | y | ( (« \& R o
(LowerStack) ) )
Event handler A 14 (( .
(App(L)) ” i
i (( (( —
Main — — 35 35

Figure 4: Blocked timeslot scenario

9.3.3 Canceled timeslot scenario

Situations may occur in the middle of a session where a requested and scheduled application radio
timeslot is being revoked.

Figure 5: Canceled timeslot scenario on page 40 shows a situation in the middle of a session where a
requested and scheduled application timeslot is being revoked. The upper part of the figure shows that
the application has ended a timeslot by returning the REQUEST_AND_END action, and the new timeslot
has been scheduled. The new scheduled timeslot has not started yet, as its starting time is in the future.
The lower part of the figure shows the situation some time later.

In the meantime, the SoftDevice has requested some reserved time for a higher priority activity that
overlaps with the scheduled application timeslot. To accommodate the higher priority request, the
application timeslot is removed from the schedule and, instead, the higher priority SoftDevice activity is
scheduled. The application is notified about this by a CANCELED event to the application event handler.
The application then makes a new request at a later point in time. That request succeeds (it does not
collide with anything), and a new timeslot is eventually scheduled.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 39



Multiprotocol support

( |
100 ms i
10 ms%
Timeslots Scheduled future
timeslot
f o (( S
Timeslot API I 7y )} i
| | ‘
1 [N
| 19 €
| 22 |
gl 125 ‘
<| | << @ ‘
ol 1" 155
=l 42 ‘
=Y 15
3 | 3 \
| g
| 1€ 8 \
| 12
I 188 ‘
| | ‘
| |
Signal handler B \ B ( | —-
(LowerStack) 7 \
\
\
Event handler ( |
- ‘ S
(App(L)) ” |
\
in__ ( ‘ _.
Main i I
\
\
\
\
\
\
( \ | -
200 ms ) \‘ 100 ms:
((
100 ms )} 4l
. Higher priority
Timeslots activity arriving
later
Timeslot APl — — ( -
eslof I 7y ) i A
| | | |
I [ | I
| 19 € - | o g
| | @ | 1z
| |z\§ o g I w8
=l 1= wl o Sl =N
g 1<g @l 9 x| 1Y iz
S a - gl U =l 18 Al g
@ [
ol | ns =z 5] | 1Z ol S
2l 152 3 & = g ow s
R I Sl 12 vii1g®
2 o g £l B 8 % 1<
X xe 8l = I o 8
| g o 8 I g2
| 128 g I 18 5
! LI : A
| | | |
Signal handler v! vl (« Y B _
(LowerStack) ”
Event handler A —-

[N
=

(App(L))

Main — —

((
))

Figure 5: Canceled timeslot scenario

9.3.4 Radio Timeslot extension example

An application can use Radio Timeslot extension to create long continuous timeslots that will give the
application as much radio time as possible while disturbing the SoftDevice activities as little as possible.

In the first timeslot in Figure 6: Radio Timeslot extension example on page 41, the application uses

the signal handler return action to request an extension of the timeslot. The extension is granted, and the
timeslot is seamlessly prolonged. The second attempt to extend the timeslot fails, as a further extension
would cause a collision with a SoftDevice activity that has been scheduled. Therefore, the application

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 40



Multiprotocol support

makes a new request, of type earliest. This results in a new Radio Timeslot being scheduled immediately

after the SoftDevice activity. This new timeslot can be extended a number of times.

10 msHI

N
0

10 ms:

10 msH|

N
0

10 ms

Timeslots

Other scheduled activity

JNON :uonoe

d3a300NS aN3LX3 :[eubls

sw o} = ybus) :s1sjeweled
AN3LX3 ‘uonoe

LYVLS ‘[eubis

sw Q) = ybuaj ysaljies sisjoweled
AN3 ANV 1S3ND3IY :uojoe

a3Iv4 aN3LX3 [eubis
sw 0} = yibua| :sisjewe.ed
aN3LX3 ‘uonoe

d3a300NS aNILX3 :[eubls
sw 0} = Yyjbua) :sieyewered
AN31X3 :uooe

Timeslot APl — —

LYVLS :leubls

Signal handler

(LowerStack)

Event handler

(App(L))

Main — —

Figure 6: Radio Timeslot extension example

N
NORDIC

41

4383_110v7.0

SEMICONDUCTOR



10 Bluetooth Low Energy protocol stack

The Bluetooth 5 compliant Host and Controller implemented by the SoftDevice are fully qualified with
multirole support (Central, Observer, Peripheral, and Broadcaster).

The SoftDevice allows applications to implement standard Bluetooth Low Energy profiles as well as
proprietary use case implementations. The AP/ is defined above the Generic Attribute Protocol (GATT),
Generic Access Profile (GAP), and Logical Link Control and Adaptation Protocol (L2CAP). Other protocols,
such as the Attribute Protocol (ATT), Security Manager (SM), and Link Layer (LL), are managed by the
higher layers of the SoftDevice as shown in the following figure.

The nRF5 Software Development Kit (nRF5 SDK) complements the SoftDevice with Service and Profile

implementations. Single-mode SoC applications are enabled by the Bluetooth Low Energy protocol stack
and nRF52 Series SoC.

Vs

NRF5x SoC)
Application
Profiles and Services
J L J L SoftDevice |
(] e N N - N Host)
Generic Attribute Generic Access Profile
Profile (GATT) (GAP)
\_ v
~
( N
Attribute Protocol Security Manager
(ATT) (SM)
VAR /
p
Logical Link Control and Adaptation Layer
Protocol (L2CAP)
L\ \ J J
4 N Controller)
Link Layer (LL)
N\ J
[ Physical Layer (PHY) ]
J
J
J

Figure 7: SoftDevice stack architecture

10.1 Profile and service support

This section lists the profiles and services adopted by the Bluetooth Special Interest Group at the time of
publication of this document.

4383 110v7.0

42

N

NORDIC"

SEMICONDUCTOR


https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_nrf5_latest.html

Bluetooth Low Energy protocol stack

The SoftDevice supports a number of GATT based profiles which are listed in the following table. The
SoftDevice also supports the use of proprietary profiles. The GATT profile specifications can be found on

Bluetooth's website in GATT Specifications.

Adopted profile
Human Interface Device (HID) over GATT

Adopted services
HID
Battery

Device Information

Heart Rate Heart Rate
Device Information
Proximity Link Loss

Immediate Alert

TX Power

Blood Pressure

Blood Pressure

Device Information

Health Thermometer

Health Thermometer

Device Information

Glucose

Glucose

Device Information

Phone Alert Status

Phone Alert Status

Alert Notification

Alert Notification

Time Current Time
Next DST Change
Reference Time Update
Find Me Immediate Alert

Cycling Speed and Cadence

Cycling Speed and Cadence

Device Information

Running Speed and Cadence

Running Speed and Cadence

Device Information

Location and Navigation

Location and Navigation

Cycling Power

Cycling Power

Scan Parameters

Scan Parameters

4383_110v7.0

43

N

NORDIC"

SEMICONDUCTOR


https://www.bluetooth.com/specifications/gatt

Bluetooth Low Energy protocol stack

Adopted profile
Weight Scale

Adopted services
Weight Scale
Body Composition
User Data

Device Information

Continuous Glucose Monitoring

Continuous Glucose Monitoring
Bond Management

Device Information

Environmental Sensing

Environmental Sensing

Pulse Oximeter

Pulse Oximeter
Device Information
Bond Management
Battery

Current Time

Object Transfer

Object Transfer

Automation 10

Automation 10

Indoor Positioning

Internet Protocol Support

Fitness Machine Profile

Fitness Machine
Device Information

User Data

Transport Discovery Service

(Currently not supported by the SoftDevice)

Reconnection Configuration Profile

Reconnection Configuration Service

Table 12: Supported profiles and services

Note: Examples for selected profiles and services are available in the nRF5 SDK. See the nRF5 SDK

documentation for details.

10.2 Bluetooth Low Energy features

The Bluetooth Low Energy protocol stack in the SoftDevice has been designed to provide an abstract but
flexible interface for application development for Bluetooth Low Energy devices.

GAP, GATT, SM, and L2CAP are implemented in the SoftDevice and managed through the API. The
SoftDevice implements GAP and GATT procedures and modes that are common to most profiles such as
the handling of discovery, connection, data transfer, and bonding.

4383_110v7.0

44

N

NORDIC"

SEMICONDUCTOR


https://infocenter.nordicsemi.com/topic/struct_sdk/struct/sdk_nrf5_latest.html

Bluetooth Low Energy protocol stack

The Bluetooth Low Energy API is consistent across Bluetooth role implementations where common
features have the same interface. The following tables describe the features found in the Bluetooth Low

Energy protocol stack.

API features

Interface to GATT/GAP

Description

Consistency between APIs including shared data
formats

Attribute table sizing, population, and access

Full flexibility to size the attribute table at
application compile time and to populate it at run
time. Attribute removal is not supported.

Asynchronous and event driven

Thread-safe function and event model enforced by
the architecture

Vendor-specific (128-bit) UUIDs for proprietary
profiles

Compact, fast, and memory efficient management
of 128-bit UUIDs

Packet flow control

Full application control over data buffers to ensure
maximum throughput

Application control of PHY

Full application control over the PHYs negotiated in
connections

Application control of MTU size and packet length

Full application control of MTU size and packet
length used in connections

Table 13: API features in the Bluetooth Low Energy stack

GAP features

Multirole

Description

Central, Peripheral, Observer, and Broadcaster can
run concurrently with connections.

Multiple bond support

Keys and peer information stored in application
space.

No restrictions in stack implementation.

Security Mode 1, Levels 1, 2, 3, and 4

Support for all levels of SM 1

Table 14: GAP features in the Bluetooth Low Energy stack

4383 110v7.0

N

NORDIC"

SEMICONDUCTOR

45



Bluetooth Low Energy protocol stack

GATT features
GATT Server

Description
Support for one ATT server for all connections

Includes configurable Service Changed support

Support for authorization

Enables control points
Enables the application to provide fresh data

Enables GAP authorization

GATT Client

Flexible data management options for packet
transmission with either fine control or abstract
management.

Implemented GATT Sub-procedures

Exchange MTU

Discover all Primary Services

Discover Primary Service by Service UUID
Find included Services

Discover All Characteristics of a Service
Discover Characteristics by UUID
Discover All Characteristic Descriptors
Read Characteristic Value

Read using Characteristic UUID

Read Long Characteristic Values

Read Multiple Characteristic Values (Client only)
Write Without Response

Write Characteristic Value

Notifications

Indications

Read Characteristic Descriptors

Read Long Characteristic Descriptors
Write Characteristic Descriptors

Write Long Characteristic Values

Write Long Characteristic Descriptors

Reliable Writes

Table 15: GATT features in the Bluetooth Low Energy stack

4383 110v7.0

46

N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy protocol stack

Flexible key generation and storage for reduced Keys are stored directly in application memory to
memory requirements avoid unnecessary copies and memory constraints.
Authenticated Man-in-the-Middle (MITM) Allows for per-link elevation of the encryption
protection security level.

Pairing methods: API provides the application full control of the

Just works, Numeric Comparison, Passkey Entry, pairing sequences.

and Out of Band

Table 16: SM features in the Bluetooth Low Energy stack

Server protocol Fast and memory efficient implementation of the
ATT server role

Client protocol Fast and memory efficient implementation of the
ATT client role

Configurable ATT_MTU size Allows for per-link configuration of ATT_MTU size

Table 17: ATT features in the Bluetooth Low Energy stack

LE Credit-based Flow Control Mode Configurable support for up to 64 channels on each
link

Table 18: L2CAP features in the Bluetooth Low Energy stack

NORDIC

SEMICONDUCTOR

4383_110v7.0



Bluetooth Low Energy protocol stack

LL features
Master role

Scanner/initiator role

Description

The SoftDevice supports multiple concurrent
central connections and an additional scanner

or initiator role. The initiator role is not available
when the number of available simultaneous
connections has been reached, but the scanner role
is still supported for new device discovery.

Slave role

Advertiser role

The SoftDevice supports multiple concurrent
peripheral connections and an additional
broadcaster or connectable advertiser. The
connectable advertiser cannot be started when the
number of available simultaneous connections has
been reached, but the advertiser can still be started
as a broadcaster.

Channel map configuration

Setup of channel map for all central connections
from the application.

Accepting update for the channel map for a
peripheral connection.

Master-initiated connection parameter update

Central role may initiate connection parameter
update. Peripheral role will accept connection
parameter update.

LE Extended Advertising

Scanning, advertising, and connecting on all
supported PHYs.

Sending and receiving up to 255 bytes of
advertising data using chained advertisements.

Anonymous advertising.

LE Data Packet Length Extension (DLE)

Up to 251 bytes of LL data channel packet payload.
Both central and peripheral roles are able to initiate
a Data Length Update procedure and respond to a
peer-initiated Data Length Update procedure.

LE 1M PHY LE connections transmitting and receiving

LE 2M PHY packets on all PHYs. Both symmetric connections
(where the TX and RX PHYs are the same) and
asymmetric connections (where the TX and RX
PHYs are different) are supported. Both central and
peripheral roles are able to initiate a PHY update
procedure and respond to a peer-initiated PHY
update procedure.

Encryption

RSSI Channel-specific signal strength measurements
during advertising, scanning, and central and
peripheral connections.

LE Ping

4383 110v7.0

48

N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy protocol stack

LL features

Privacy

Description

The LL can generate and resolve resolvable private
addresses in the advertiser, scanner, and initiator
roles.

Extended Scanner Filter Policies

Table 19: LL features in the Bluetooth Low Energy stack

Proprietary features

TX Power control

Description

Access for the application to change transmit
power settings for a specific role or connection
handle.

MBR for Device Firmware Update (DFU)

Enables over-the-air firmware replacement,
including full SoftDevice update capability.

Quality of Service (QoS) channel survey

Measures the energy level of Bluetooth Low Energy
channels. The application can then set an adapted
channel map to avoid busy channels.

Channel map for Observer role

Access for the application to set a channel map for
the Observer role. This can be used to avoid busy or
uninteresting channels.

Table 20: Proprietary features in the Bluetooth Low Energy stack

10.3 Limitations on procedure concurrency

When the SoftDevice has established multiple connections as a Central, the concurrency of protocol

procedures will have some limitations.

The Host instantiates both GATT and GAP instances for each connection, while the SM Initiator has a
configurable number of instantiations. The LL also has concurrent procedure limitations that are handled
inside the SoftDevice without requiring management from the application.

4383_110v7.0

49

N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy protocol stack

Protocol procedures Limitation with multiple connections
GATT None. All procedures can be executed in parallel.
GAP None. All procedures can be executed in parallel.

Note that some GAP procedures require LL control
procedures (connection parameter update and
encryption). In this case, the GAP module will
queue the LL procedures and execute them in
sequence.

SM None. The procedures for all peripheral
connections can be executed in parallel. The
number of concurrent procedures for central
connections are fully configurable.

LL The LL Disconnect procedure has no limitations and
can be executed on any or all links simultaneously.

The LL connection parameter update on a master
link can only be executed on one master link at a
time.

Accepting connection parameter update and
encryption establishment on a slave link is always
allowed irrespective of any control procedure
running on master links.

Table 21: Limitations on procedure concurrency

10.4 Bluetooth Low Energy role configuration

The S132 SoftDevice stack supports concurrent operation in multiple Bluetooth Low Energy roles. The
roles available can be configured when the S132 SoftDevice stack is enabled at runtime.

The SoftDevice provides a mechanism for enabling the number of central or peripheral roles the
application can run concurrently, and for enabling QoS channel survey. The SoftDevice can be configured
with multiple connections as a Central or a Peripheral. The SoftDevice supports running one connectable
Advertiser or Broadcaster and one Scanner or Observer concurrently with the Bluetooth Low Energy
connections.

An Initiator or a connectable Advertiser can only be started if the number of connections is less than the
maximum supported.

When the SoftDevice is enabled, it will allocate memory for the connections the application has
requested. The SoftDevice will make sure that it has enough buffers to avoid buffer starvation within a
connection event if the application processes the SoftDevice events immediately when they are raised.
The SoftDevice will also allocate memory for the QoS channel survey if the application has enabled it.

The SoftDevice supports per connection bandwidth configuration by giving the application control over
the connection interval and the length of the connection event. By default, connections are set to have an
event length of 3.75 ms. This is sufficient for three packet pairs in a connection event with the default 27
octet-long LL payload for Data Channel PDUs.

The connection bandwidth can be increased by enabling Connection Event Length Extension. See
Connection timing with Connection Event Length Extension on page 79 for more information. Enabling
Connection Event Length Extension does not increase the size of the SoftDevice memory pools.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 50



Bluetooth Low Energy protocol stack

Bandwidth and multilink scheduling can affect each other. See Scheduling on page 70 for details.
Knowledge about multilink scheduling can be used to get improved performance on all links. Refer to
Suggested intervals and windows on page 80 for details about recommended configurations.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 51



171 Radio Notification

The Radio Notification is a configurable feature that enables ACTIVE and INACTIVE (nACTIVE) signals from
the SoftDevice to the application notifying it when the radio is in use.

11.1 Radio Notification signals

Radio notification signals are used to inform the application about radio activity.

The Radio Notification signals are sent right before or at the end of defined time intervals of radio

operation, namely the SoftDevice or application Radio Events®.

Radio notifications behave differently when Connection Event Length Extension is enabled. Radio
Notification with Connection Event Length Extension on page 60 explains the behavior when this
feature is enabled. Otherwise, this chapter assumes that the feature is disabled.

To ensure that the Radio Notification signals behave in a consistent way, the Radio Notification shall
always be configured when the SoftDevice is in an idle state with no protocol stack or other SoftDevice
activity in progress. Therefore, it is recommended to configure the Radio Notification signals directly after
the SoftDevice has been enabled.

If it is enabled, the ACTIVE signal is sent before the Radio Event starts. Similarly, if the nACTIVE signal is
enabled, it is sent at the end of the Radio Event. These signals can be used by the application developer
to synchronize the application logic with the radio activity. For example, the ACTIVE signal can be used
to switch off external devices to manage peak current drawn during periods when the radio is ON, or to
trigger sensor data collection for transmission during the upcoming Radio Event.

The notification signals are sent using software interrupt as specified in Table 5: Allocation of software
interrupt vectors to SoftDevice signals on page 27.

As both ACTIVE and nACTIVE use the same software interrupt, it is up to the application to manage them.
If both ACTIVE and nACTIVE are configured ON by the application, there will always be an ACTIVE signal
before an nACTIVE signal.

Refer to Table 22: Radio Notification notation and terminology on page 53 for the notation that is used
in this section.

When there is sufficient time between Radio Events (tgsp > thgist), both the ACTIVE and nACTIVE
notification signals will be present at each Radio Event. Figure 8: Two radio events with ACTIVE and
nACTIVE signals on page 52 illustrates an example of this scenario with two Radio Events. The figure
also illustrates the ACTIVE and nACTIVE signals with respect to the Radio Events.

ACTIVE nACTIVE ACTIVE nACTIVE

+ +
e {prep—rrmoce---4 ‘radio ' tprep ............ tradio

i P ---e->i | Radio activity S P eeee-Di | Radio activity

Figure 8: Two radio events with ACTIVE and nACTIVE signals

8 Application Radio Events are defined as Radio Timeslots, see Multiprotocol support on page 32.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 52



Radio Notification

When there is not sufficient time between the Radio Events (tgap < thgist), the ACTIVE and nACTIVE
notification signals will be skipped. There will still be an ACTIVE signal before the first event and an
nACTIVE signal after the last event. This is shown in Figure 9: Two radio events without ACTIVE and
nACTIVE signals between the events on page 53 that illustrates two radio events where tgy, is too
small and the notification signals will not be available between the events.

ACTIVE nACTIVE
A ) A
Undist 7 < Undist ?

: ._tprep ? €—tradio < ,.tprep tradio
§<- ------ P -----3>1 | Radio activity §<- ----- P .-----3>1 | Radio activity
¢ tyap >
Figure 9: Two radio events without ACTIVE and nACTIVE signals between the events

Label Description Notes

ACTIVE The ACTIVE signal prior to a Radio Event

nACTIVE The nACTIVE signal after a Radio Event Because both ACTIVE and nACTIVE use

the same software interrupt, it is up to the
application to manage them. If both ACTIVE
and nACTIVE are configured ON by the
application, there will always be an ACTIVE
signal before an nACTIVE signal.

P SoftDevice CPU processing in interrupt The CPU processing may occur anytime, up
priority level 0 between the ACTIVE signal to tyrep before the start of the Radio Event.
and the start of the Radio Event

RX Reception of packet

TX Transmission of packet

(T The total time of a Radio Activity in a
connection event

teap The time between the end of one Radio
Event and the start of the following one

thdist The notification distance - the time between | This time is configurable by the application
the ACTIVE signal and the first RX/TX in a developer.

Radio Event

torep The time before first RX/TX available to the | The application will be interrupted by a
protocol stack to prepare and configure the | SoftDevice interrupt handler at priority level
radio 0 tprep time units before the start of the

Radio Event.
Note: All packet data to send in an
event should be sent to the stack
torep before the Radio Event starts.
tp Time used for preprocessing before the

Radio Event

4383 110v7.0

53

N

NORDIC"

SEMICONDUCTOR



Radio Notification

tinterval

Time period of periodic protocol Radio
Events (e.g. Bluetooth Low Energy
connection interval)

teve nt

Total Length of a Radio Event, including
processing overhead

The length of a Radio Event for connected
roles can be configured per connection

by the application. This includes all the
overhead associated with the Radio Event.
This means that for a central link the event
length is also the minimum time between
the start of adjacent central role Radio
events and between the last central role
radio event and the scanner. Connection
Event Length Extension does not affect the
minimum time between central links.

scanReserved

Reserved time needed by the SoftDevice for
each ScanWindow

Table 22: Radio Notification notation and terminology

The application can configure t,gist and set the following values (us): 800, 1740, 2680, 3620, 4560, 5500.

torep 167 to 1542
tp <165
TscanReserved 760

Table 23: Bluetooth Low Energy Radio Notification timing ranges

The timing range for t,,4io depends on the radio activity, as shown in Table 24: Bluetooth Low Energy Radio
Activity (tragio) timing ranges for advertising on LE 1M PHY on page 54, Table 25: Bluetooth Low Energy
Radio Activity (t,aqio) timing ranges for Extended Advertising on page 55, and Table 26: Bluetooth Low
Energy Radio Activity (tagio) timing ranges for connected roles on page 55.

Undirected and scannable advertising - 0 to 31-byte | 2750 to 5500 us
payload, 3 channels

Non-connectable advertising - 0 to 31-byte 2150 to 2950 ps
payload, 3 channels

High-duty cycle directed advertising - 3 channels 1.28s

Table 24: Bluetooth Low Energy Radio Activity (t,qqi0) timing ranges for advertising on LE 1M PHY

4383_110v7.0

54

N

NORDIC

SEMICONDUCTOR



Radio Notification

PHY Radio activity Range (ps)

LE 1M PHY | Non-connectable and non-scannable advertising - 0 to 255 bytes, | 2250 to 6650
3 primary advertising channels

Connectable advertising - 0 to 238 bytes, 3 primary advertising | 3300 to 5050
channels

Scannable advertising - 0 to 255 bytes, 3 primary advertising 2800 to 7550
channels

LE 2M PHY | Non-connectable and non-scannable advertising - 0 to 255 bytes, | 2200 to 4550
3 primary advertising channels

Connectable advertising - 0 to 238 bytes, 3 primary advertising | 2850 to 3750
channels

Scannable advertising - 0 to 255 bytes, 3 primary advertising 2600 to 5150
channels

Table 25: Bluetooth Low Energy Radio Activity (t,q.qi0) timing ranges for Extended Advertising

Timing ranges for LE 1M PHY in Table 25: Bluetooth Low Energy Radio Activity (t,aqi) timing ranges for
Extended Advertising on page 55 are valid when LE 1M PHY is used for both primary and secondary
advertising channels. Timing ranges for LE 2M PHY are valid when LE 1M PHY is used for primary
advertising channels and LE 2M PHY is used for secondary advertising channels.

Note: For non-connectable and non-scannable advertising and scannable advertising, the
advertiser sends multiple auxiliary packets with data when the number of data bytes is close to the
limit of 255 bytes.

For connected roles, the time when the radio is active depends on the PHY. A higher bitrate reduces the
radio activity time, while a lower bitrate increases the radio activity time.

PHY Range (ps)
LE 1M PHY 310 t0 teyent - 900
LE 2M PHY 230 t0 teyent - 900

Table 26: Bluetooth Low Energy Radio Activity (t,qq4i0) timing ranges for connected roles

Based on Table 22: Radio Notification notation and terminology on page 53, the amount of CPU time
available to the application between the ACTIVE signal and the start of the Radio Event is:

thdist — tp

The following expression shows the length of the time interval between the ACTIVE signal and the stack
prepare interrupt:

Endist — tprep(maximum)

If the data packets are to be sent in the following Radio Event, they must be transferred to the stack using
the protocol AP/ within this time interval.

Note: t,ep may be greater than tygis:. If time is required to handle packets or manage peripherals
before interrupts are generated by the stack, t,gist must be set larger than the maximum value of

Torep-

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 55



Radio Notification

11.2 Radio Notification on connection events as a
Central

This section clarifies the functionality of the Radio Notification feature when the SoftDevice operates
as a Bluetooth Low Energy Central. The behavior of the notification signals is shown under various
combinations of active central links and scanning events.

See Table 22: Radio Notification notation and terminology on page 53 for the notations used in the
text and the figures of this section. For a comprehensive understanding of role scheduling, see Scheduling
on page 70.

For a central link, multiple packets may be exchanged within a single Radio (connection) Event. This is
shown in the following figure.

ACTIVE nACTIVE

.......................................................

H tp P < tinterval

Figure 10: Central link with multiple packet exchange per connection event

To ensure that the ACTIVE notification signal will be available to the application at the configured time
when a single central link is established (Figure 11: Radio Notification signal in relation to a single active
link on page 56), the following condition must hold:

thdist T tevent — tprep < linterval

ACTIVE nACTIVE ACTIVE nACTIVE
t .. t "
o §t§we.‘l‘j§3§:"ﬁ< forer™™> e f?fe'.ee_—__sfi%es@:?
Llnk—O : : Llnk—O
(_tevent_>
< tinterval >

Figure 11: Radio Notification signal in relation to a single active link

A SoftDevice operating as a Central may establish multiple central links and schedule them back-to-back in
each connection interval. An example of a Central with three links is shown in Figure 12: Radio Notification
signal with three active Central links on page 57. To ensure that the ACTIVE notification signal will

be available to the application at the configured time when three links are established as a Central, the
following condition must hold:

tndist + tevent,O + tevent,l + tevent,z - tprep < tinterval

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 56



Radio Notification

ACTIVE nACTIVE ACTIVE nACTIVE
tndls.t tndlst

etpTBD%(_thdIO_)etDTBD%tradloaetprep%trad10% 'tprep' . > etprep%tradwo%etprep%tradlo%

: iR s i : : : : e : :

§<.. P...>: x Ix ooo§<.. P..>§ o )R(ooo§§<.. P..>§ ; )R(ooog §< P >§ X Sooo§§<-. P-->§ ; )R(ooo:

: s : ; i ; ; : ; i ; ie0®

Link-0 " Link1 " Link2 " Link0 " Link1
<_tevent,u € tevenm A tevenl,z >
< tinterval >

Figure 12: Radio Notification signal with three active Central links

In case one or several central links are dropped, an idle time interval will exist between active central links.
If the interval is sufficiently long, the application may unexpectedly receive the Radio Notification signal. In
particular, the notification signal will be available to the application in the idle time interval, if this interval
is longer than tpgist. This can be expressed as:

z:i:m, ...n tevent,i + tprep > tndist
where Link-m, ..., Link-n are consecutive inactive central links.

For example, in the scenario shown in Figure 13: Radio Notification signal with two active Central links on
page 57, Link-1 is not active and a gap of teyent,1 time units (e.g. ms) exists between Link-0 and Link-2.
Consequently, the ACTIVE notification signal will be available to the application, if the following condition
holds:

tevent,l + tprep > tpdist

ACTIVE nACTIVE ACTIVE nACTIVE ACTIVE nACTIVE
tndlst_> tndlst_> tndlst_>
lorer D€ traao < Htorep > Clorer 2 Thagom 2 o> ooy € a0
i< p...>§ ;I'( Q..oz §< p >§ ; 5...% §<. p..>§ ;I'( )F‘(,...g
i i f f i |ooeo
Link-0 " Links " Link2 " Link0
<_tevent,u >< tevent,‘l >< tevent,z )
< tinterval >

Figure 13: Radio Notification signal with two active Central links

A SoftDevice may additionally run a Scanner in parallel to the central links. This is shown in Figure 14:
Radio Notification signals for three active central connections while scanning on page 57, where three
central links and a Scanner have been established. To guarantee in this case that the ACTIVE notification
signal will be available to the application at the configured time, the following condition must hold:

thaist + tevent,O + tevent,l + tevent,z + Scan Window + tscanreserved < tinterval

ACTIVE nACTIVE ACTIVE nACTIVE
tndlst_> tndlst_>
etDrep%trad|OﬁétDrep%tradm%etprep%trad m% etprep%HtradloH t _p_rge?‘tt_r?glgj
i< P- ;r( Q...§<.. P-i ; ;...;k_. p..>§ )T( )'?...,:<.. p..>» Scan Window ; §< p..>§ ; 2...%
" Linko " Link " Link2 ) " Link0
<_tevent,U >< tevent,‘l >< tevent,z )
< tinterval >

Figure 14: Radio Notification signals for three active central connections while scanning

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 57



Radio Notification

11.3 Radio Notification on connection events as a
Peripheral

This section clarifies the functionality of the Radio Notification feature when the SoftDevice operates as a
Bluetooth Low Energy Peripheral.

Radio Notification events are as shown in the following figure.

ACTIVE nACTIVE
A A
3 Undist >

o 26— tradio—————>
et rIT R
< P > X XX XX X e
oo
—) tp % < tinterval

Figure 15: Peripheral link with multiple packet exchange per connection event

To guarantee that the ACTIVE notification signal is available to the application at the configured time when
a single peripheral link is established, the following condition must hold:

tndist T tradio < tinterval

For exceptions, see Table 27: Maximum peripheral packet transfer per Bluetooth Low Energy Radio Event
on page 59.

The SoftDevice will limit the length of a Radio Event (t,44i0), thereby reducing the maximum number of
packets exchanged, to accommodate the selected t,q4ist. Figure 16: Consecutive peripheral Radio Events
with Radio Notification signals on page 58 shows consecutive Radio Events with Radio Notification
signal and illustrates the limitation in t;,4i0 Which may be required to guarantee t,qist is preserved.

ACTIVE nACTIVE ACTIVE nACTIVE
A A A A
< tndis‘ tndist 7
etprepﬁ %tradioﬁv etprep_> I&tradioﬁ

t.
linterval 4

Figure 16: Consecutive peripheral Radio Events with Radio Notification signals

Table 27: Maximum peripheral packet transfer per Bluetooth Low Energy Radio Event on page 59
shows the limitation on the maximum number of 27-byte packets which can be transferred per Radio
Event for given combinations of t,gist and tinterval-

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 58



Radio Notification

The data in this table assumes symmetric connections using LE 1M PHY, 27-byte packets, and full-duplex
with Bluetooth Low Energy connection event length configured to be 7.5 ms and Connection Event Length
Extension disabled.

800

6 6 6
1740 5 6 6
2680 4 6 6
3620 3 5 6
4560 2 4 6
5500 1 4 6

Table 27: Maximum peripheral packet transfer per Bluetooth Low Energy Radio Event

11.4 Radio Notification with concurrent peripheral and
central connection events

The Peripheral link events are arbitrarily scheduled with respect to each other and to the Central links.
Therefore, if one link event ends too close to the start of a peripheral event, the notification signal before
the peripheral connection event might not be available to the application.

Figure 17: Radio Event distance too short to trigger the notification signal on page 59 shows an
example where the gap before Link-3 is too short to trigger the nACTIVE and ACTIVE notification signals.

ACTIVE NACTIVE
et e eI oy Clan) o Sl
-< P> X ...-< P >g)T( ...-< p>)T( ... -< P>:)F§ ...
E LmlE(E-O . LmIE(E-’I i LinIf—Z : E LiErE1k-3 :
(—tgapH

Figure 17: Radio Event distance too short to trigger the notification signal

As shown in Figure 18: Radio Event distance is long enough to trigger notification signal on page 60,
the notification signal will arrive if the following condition is met:

tgap > thist

In the figure, the gap before Link-3 is sufficient to trigger the nACTIVE and ACTIVE notification signals.

N

NORDIC"

SEMICONDUCTOR

4383_110v7.0 59



Radio Notification

ACTIVE nACTIVE ACTIVE nACTIVE
o .-ttﬂeeﬁ(—‘radmﬁtia@eﬁﬁi@gpﬁtﬁa@p??f.!r.ayp.'.) ...... § ot ﬁi&fse?sf.‘.&a.dxeﬁ
é(--F‘--):éXX--.(—-P--)Xiu-(P);X)Féuul <p>§;
Link-0 . Linll<-1 ¥ Linll(l-2 ! : Link-3
< {gap

Figure 18: Radio Event distance is long enough to trigger notification signal

11.5 Radio Notification with Connection Event Length
Extension

This section clarifies the functionality of the Radio Notification signal when Connection Event Length
Extension is enabled in the SoftDevice.

When Connection Event Length Extension is enabled, connection events may be extended beyond their
initial t a4io to accommodate the exchange of a higher number of packet pairs. This allows more idle time
to be used by the radio and will consequently affect the radio notifications.

In peripheral links, the SoftDevice will impose a limit on how long the Radio Event (ta4i0) may be
extended, thereby restricting the maximum number of packets exchanged to accommodate the selected
tdist- The following figure shows an example where the Radio Notification t, g is limiting the extension of
the first Radio Event.

ACTIVE nACTIVE ACTIVE nACTIVE
A A A A
< tndisx X tradio > < tndls[ >
Ftprep tr,:-ldiuiorig ¢ tradioﬁextend% t.tP.r?Rj ﬁ_tfe_l_dlg?
<P MY S A
tinterval >

Figure 19: Peripheral connection event length extension limited by Radio Notification

In central links, Radio Notification does not impose limits on how long the Radio event (t,,4i0) Mmay be
extended. This implies that all idle time in between connection events can be used for event extension.
Because of this, the ACTIVE signal and nACTIVE signals between connection events cannot be guaranteed
when Connection Event Length Extension is enabled. The following figure shows an example of how the
idle time between connection events can be utilized when Connection Event Length Extension and Radio
Notification signals are enabled.

ACTIVE ACTIVE
et —tge—> "

tr‘ldIS[ tradio tradio

7
etprep*tradlo ong*tradlo extend% etprep*tradlo orlg%tradlo extendﬁ etprep+tradlo%

......... Jececemcreccccccccacccacanaann RITEEEEPRLY PE Y jmeeeeececqececcecceao
H .

.

.

.

s s P o i |ooe
" Linko Lkt Link2 T Linko '
Ftevent,u >< tevent,1 >( tevent,‘l )

( tinterval )

Figure 20: Connection Event Length Extension with central links

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 60



Radio Notification

When a central and a peripheral link are running concurrently, the central connection event may be
extended to utilize the available time until the start of the peripheral connection event. In case the central
event ends too close to the start of the peripheral event, the notification signal before the peripheral
connection event may not be available to the application. Figure 17: Radio Event distance too short to
trigger the notification signal on page 59 shows an example where the time distance between the

central and the peripheral events is too short to allow the SoftDevice to trigger the ACTIVE notification
signal.

11.6 Power amplifier and low noise amplifier control
configuration

The SoftDevice can be configured by the application to toggle GPIO pins before and after radio
transmission and before and after radio reception to control a Power Amplifier (PA) and/or Low-Noise
Amplifier (LNA).

The PA/LNA control functionality is provided by the SoftDevice protocol stack implementation and must be
enabled by the application before it can be used.

Note: In order to be used along with proprietary radio protocols that make use of the Timeslot API,
the PA/LNA control functionality needs to be implemented as part of the proprietary radio protocol
stack.

The PA and the LNA are controlled by one GPIO pin each. The PA pin is activated during radio transmission,
and the LNA pin is activated during radio reception. The pins can be configured to be active low or active
high. The following figure shows an example of PA/LNA timings where the PA pin is configured active high
and the LNA pin is configured active low.

2342 ps

-
! i

3 ~ 5%2ps
Radio TX | send | e
Radio RX | Rew

PA pin

LNA pin

Figure 21: PA/LNA and radio activity timing

The SoftDevice uses a GPIOTE connected to a timer through a PP/ channel to set the PA and LNA

pins to active before the EVENTS_READY signal of the RADIO. The PA pin is set active 2312 ps before
EVENTS_READY for TX, and the LNA pin is set active 52 us before EVENTS_READY for RX. The pins are
restored to inactive state using a PP/ connected to the EVENTS_DISABLED event on the RADIO. See the
relevant product specification (Table 1: Additional documentation on page 14) for more details on the
nRF52 RADIO notification signals.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 61



12 Master boot record and bootloader

The SoftDevice supports the use of a bootloader. A bootloader may be used to update the firmware on the
SoC.

The nRF52 software architecture includes an MBR (see Figure 1: SoC application with the SoftDevice on
page 15). The MBR is necessary for the bootloader to update the SoftDevice or to update the bootloader
itself. The MBR is a required component in the system. The inclusion of a bootloader is optional.

12.1 Master boot record

The main functionality of the MBR is to provide an interface to allow in-system updates of the application,
the SoftDevice, and bootloader firmware.

The MBR module occupies a defined region in the SoC program memory where the System Vector table
resides.

All exceptions (reset, hard fault, interrupts, SVCs) are first processed by the MBR and then forwarded to
the appropriate handlers (for example the bootloader or the SoftDevice exception handlers). For more
information on the interrupt forwarding scheme, see Interrupt model and processor availability on page
84,

During a firmware update process, the MBR is never erased. The MBR ensures that the bootloader can
recover from any unexpected resets during an ongoing update process.

When issuing the SD_MBR_COMMAND_COPY_BL or SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET
commands, the MBR requires a page in the application flash region (see Memory isolation and runtime
protection on page 20) for storing the MBR parameters. The address of this flash page is referred to as
MBRPARAMADDR (see Figure 22: MBR, SoftDevice, and bootloader architecture on page 63). The
MBRPARAMADDR address can be provided either at the MBR PARAM ADDR flash memory location,
which is defined in nrf mbr.h, orin the UICR.NRFFW[1] register. Using the flash memory location is
the safest because it can be write protected. This is also the location that will be checked first by the MBR.
UICR.NRFFW([1] is checked only if MBR PARAM ADDR has the default value, which is OxFFFFFFFF.

When an MBRPARAMADDR address is provided, the page it refers to must not be used by the application.
The page will be cleared by the MBR and used to store parameters before chip reset.

The MBR commands that require flash access will return NRF_ ERROR_NO_MEM if the MBRPARAMADDR
address is not provided. If the MBR commands that require flash access are not used, the application does
not need to reserve the flash page, and it can leave the MBR PARAM ADDR flash memory location and
the UICR.NRFFW[1] register as OXFFFFFFFF, which is the default value.

12.2 Bootloader

A bootloader may be used to handle in-system update procedures.

The bootloader has full access to the SoftDevice APl and can be implemented like any application that
uses the SoftDevice. In particular, the bootloader can make use of the SoftDevice API for Bluetooth Low
Energy communication.

The bootloader is supported in the SoftDevice architecture by using a configurable base address for the
bootloader in the application flash region. This address is referred to as BOOTLOADERADDR (see Figure
22: MBR, SoftDevice, and bootloader architecture on page 63). The BOOTLOADERADDR address

can be provided either at the MBR BOOTLOADER ADDR flash memory location, which is defined in

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 62



Master boot record and bootloader

nrf mbr.h, orinthe UICR.NRFFWIO] register. Using the flash memory location is the safest because
it can be write protected protected. This is also the location that will be checked first by the MBR.
UICR.NRFFW[0] is checked only if MBR  BOOTLOADER ADDR has the default value, which is OxFFFFFFFF.

The bootloader is responsible for determining the start address of the application. It uses
sd _softdevice vector table base set(uint32 t address) to tell the SoftDevice
where the application starts.

The bootloader is also responsible for keeping track and verifying the integrity of the firmware, including
the application, SoftDevice, and the bootloader itself. If an unexpected reset occurs during a firmware
update, the bootloader is responsible for detecting it and resuming the update procedure.

(Optional)
MBR Parameter storage MBRPARAMADDR

(Optional)
Bootloader

Bootloader Vector Table B BOOTLOADERADDR

Application

[ ABBIGEGNVESOHTEBIEN _APP_CODE BASE

SoftDevice

SoftDevice Vector Table = _0x00001000

MBR
MBR Vector Table :0xoooooooo

Figure 22: MBR, SoftDevice, and bootloader architecture

12.3 Master boot record and SoftDevice reset procedure

Upon system reset, the execution branches to the MBR Reset Handler as specified in the System Vector
Table.

This section describes the MBR and SoftDevice reset behavior.
¢ If an in-system bootloader update procedure is in progress:

e The in-system update procedure continues its execution.
e System resets.
e Elseif SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET has been called previously:

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 63



Master boot record and bootloader

e Forward interrupts to the address specified in the
sd mbr command vector table base set t parameter of the
SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET command.

¢ Run from Reset Handler (defined in the vector table which is passed as command parameter).
Else if a bootloader is present:

e Forward interrupts to the bootloader.
* Run Bootloader Reset Handler (defined in bootloader Vector Table at BOOTLOADERADDR).
Else if a SoftDevice is present:

e Forward interrupts to the SoftDevice.
¢ Execute the SoftDevice Reset Handler (defined in SoftDevice Vector Table at 0x00001000).
¢ Inthis case, APP_CODE_BASE is hardcoded inside the SoftDevice.

¢ The SoftDevice invokes the Application Reset Handler (as specified in the Application Vector Table at
APP CODE_ BASE).
Else system startup error:

¢ Sleep forever.

12.4 Master boot record and SoftDevice initialization
procedure

The SoftDevice can be enabled by the bootloader.

The bootloader can enable the SoftDevice by using the following procedure:

1.

3.

Issuing a command for MBR to forward interrupts to the SoftDevice using sd_mbr command () with
SD_MBR_COMMAND_INIT_SD.

Issuing a command for the SoftDevice to forward interrupts to the bootloader using

sd _softdevice vector table base set (uint32 t address) with
BOOTLOADERADDR as parameter.

Enabling the SoftDevice using sd_softdevice enable ().

The bootloader can transfer the execution from itself to the application by using the following procedure:

1.

4383 110v7.0 64

Issuing a command for MBR to forward interrupts to the SoftDevice using sd_mbr command () with
SD_MBR_COMMAND_INIT_SD, if interrupts are not forwarded to the SoftDevice.
Issuing sd_softdevice disable (), to ensure that the SoftDevice is disabled.

Issuing a command for the SoftDevice to forward interrupts to the application using
sd_softdevice vector table base set (uint32 t address) with
APP CODE_ BASE as a parameter.

Branching to the application Reset Handler as specified in the Application Vector Table.

N

NORDIC"

SEMICONDUCTOR



13

SoftDevice information structure

The SoftDevice binary file contains an information structure.

The structure is illustrated in Figure 23: SoftDevice information structure on page 65. The location of

the structure and the contents of various structure fields can be obtained at run time by the application
using macros defined in the nrf sdm.h header file. The information structure can also be accessed by
parsing the binary SoftDevice file.

word 0
word 1
word 2
word 3
word 4
word 5

word 6

word 10

The SoftDevice release is identified by the Firmware ID, located in firmware 1id, and the code

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

1 0

Reserved for future use

info_size

magic_number

SoftDevice size

Reserved for future use

firmware_id

sd_id

sd_version

sd_unique_str

Figure 23: SoftDevice information structure

revision, located in sd_unique_ str. A unique Firmware ID is assigned to each production and beta
release. Alpha and prealpha releases usually have a firmware ID set to OxFFFE. The code revision in
sd_unique_str isthe git hash from which the SoftDevice is built.

4383_110v7.0

65

N

NORDIC"

SEMICONDUCTOR



14

SoftDevice memory usage

The SoftDevice shares the available flash memory and RAM on the nRF52 SoC with the application. The
application must therefore be aware of the memory resources needed by the SoftDevice and leave the
parts of the memory used by the SoftDevice undisturbed for correct SoftDevice operation.

The SoftDevice requires a fixed amount of flash memory and RAM, which are detailed in Memory resource
requirements on page 67. In addition, depending on the runtime configuration, the SoftDevice will
require:

¢ Additional RAM for Bluetooth Low Energy roles and bandwidth (see Role configuration on page 69)
e Attributes (see Attribute table size on page 68)

e Security (see Security configuration on page 69)

e UUID storage (see Vendor specific UUID counts on page 69)

14.1 Memory resource map and usage

The memory map for program memory and RAM when the SoftDevice is enabled is described in this
section.

Figure 24: Memory resource map on page 67 illustrates the memory usage of the SoftDevice alongside

a user application. The flash memory for the SoftDevice is always reserved, and the application program
code should be placed above the SoftDevice at APP_CODE_BASE. The SoftDevice uses the first eight
bytes of RAM when not enabled. Once enabled, the RAM usage of the SoftDevice increases. With the
exception of the call stack, the RAM usage for the SoftDevice is always isolated from the application usage.
Therefore, the application is required to not access the RAM region below APP_RAM BASE. The value
of APP RAM BASE is obtained by calling sd_softdevice enable, which will always return the
required minimum start address of the application RAM region for the given configuration. An access
below the required minimum application RAM start address will result in undefined behavior. The RAM
requirements of an enabled SoftDevice are detailed in Table 28: S132 Memory resource requirements for
RAM on page 67.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 66



SoftDevice memory usage

Program Memory 0x00000000 + RAM 0x20000000 +
<size of flash> i
size of flas Call Stack <size of RAM>
Heap

APP_CODE_BASE APP_RAM_BASE

SoftDevice
SoftDevice

Master Boot Record 0x20000000

SoftDevice Vector Table | 0x00001000

Master Boot Record

MBR Vector Table 0x00000000

Figure 24: Memory resource map

14.1.1 Memory resource requirements

This section describes the memory resource requirements for an enabled and disabled S132 SoftDevice.

Flash

The combined flash usage of the SoftDevice and the MBR can be found in the SoftDevice properties
section of the release notes. This value corresponds to APP_ CODE_BASE in Figure 24: Memory resource
map on page 67. The combined flash usage of the SoftDevice and the MBR can also be calculated by

adding the MBR flash usage, which is 4 kB®, to the SD_FLASH SIZE definedinnrf sdm.h.

RAM
SoftDevice RAM consumption Minimum required RAM © + 8 bytes
Configurable Resources
APP_RAM_BASE address 0x20000000 + SoftDevice RAM 0x20000008
(minimum required value) consumption
Table 28: 5132 Memory resource requirements for RAM
Call stack

By default, the nRF52 SoC will have a shared call stack with both application stack frames and SoftDevice
stack frames, managed by the MSP.

9 1kB = 1024 bytes
1% For the minimum RAM required by the SoftDevice, see the SoftDevice properties section of the

release notes.
> .

NORDIC

SEMICONDUCTOR

4383_110v7.0 67



SoftDevice memory usage

The application configures the call stack, and the MSP gets initialized on reset to the address specified by
the application vector table entry 0. In its reset vector the application may configure the CPU to use the
Process Stack Pointer (PSP) in thread mode. This configuration is optional but may be required by an OS,
for example, to isolate application threads and OS context memory. The application programmer must be
aware that the SoftDevice will use the MSP as it is always executed in exception mode.

Note: It is customary, but not required, to let the stack run downwards from the upper limit of the
RAM Region.

With each major release of an S132 SoftDevice, its maximum (worst case) call stack requirement may

be updated. The SoftDevice uses the call stack when SoftDevice interrupt handlers execute. These are
asynchronous to the application, so the application programmer must reserve call stack for the application
in addition to the call stack requirement by the SoftDevice.

The application must reserve sufficient space to satisfy both the application and the SoftDevice stack
memory requirements. The nRF52 SoC has no designated hardware for detecting stack overflow. The
application can use the Memory Watch Unit (MWU) peripheral to implement a mechanism for stack
overflow detection.

The SoftDevice does not use the ARM Cortex-M4 Floating-Point Unit (FPU) and does not configure any
floating-point registers. Table 29: S132 Memory resource requirements for call stack on page 68
depicts the maximum call stack size that may be consumed by the SoftDevice when not using the FPU.

The SoftDevice uses multiple interrupt levels, as described in detail in Interrupt model and processor
availability on page 84. If FPU is used by the application, the processor will need to reserve memory in

the stack frame for stacking the FPU registers for each interrupt level used by the SoftDevice. This must be
accounted for when configuring the total call stack size. For more information on how the use of multiple
interrupt levels impacts the stack size when using the FPU, see Application Note 298 from ARM regarding
the ARM Cortex-M4 processor with FPU.

Call stack $132 Enabled $132 Disabled
Maximum usage with FPU 1536 bytes (0x600) 0 bytes
disabled

Table 29: 5132 Memory resource requirements for call stack

Heap

There is no heap required by nRF52 SoftDevices. The application is free to allocate and use a heap without
disrupting the SoftDevice functionality.

14.2 Attribute table size

The size of the attribute table can be configured through the SoftDevice APl when enabling the Bluetooth
Low Energy stack.

The default and minimum values of the attribute table size, ATTR TAB SIZE, can be found in

ble gatts.h. Applications that require an attribute table smaller or bigger than the default size

can choose to either reduce or increase the attribute table size. The amount of RAM reserved by the
SoftDevice and the minimum required start address for the application RAM, APP_ RAM BASE, will then
change accordingly.

The attribute table size is set through sd _ble cfg set.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 68



http://infocenter.arm.com/help/topic/com.arm.doc.set.appnotes/index.html

SoftDevice memory usage

14.3 Role configuration

The SoftDevice allows the number of connections, the configuration of each connection, and its role to be
specified by the application.

Role configuration, the number of connections, and connection configuration, will determine the amount
of RAM resources used by the SoftDevice. The minimum required start address for the application RAM,
APP RAM BASE, will change accordingly. See Bluetooth Low Energy role configuration on page 50 for
more details on role configuration.

14.4 Security configuration

The SoftDevice allows the number of Security Manager Protocol (SMP) instances available for all
connections operating in central role to be specified by the application.

At least one SMP instance is needed in order to carry out SMP operations for central role connections,
and a SMP instance can be shared amongst multiple central role connections. A larger number of SMP
instances will allow multiple connections to have ongoing concurrent SMP operations, but this will
result in increased RAM usage by the SoftDevice. The number of SMP instances is specified through
sd ble cfg set.

14.5 Vendor specific UUID counts

The SoftDevice allows the use of vendor specific UUIDs, which are stored by the SoftDevice in the RAM
that is allocated once the SoftDevice is enabled.

The number of vendor specific UUIDs that can be stored by the SoftDevice is set through
sd ble cfg set.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 69



15

Scheduling

The S132 stack has multiple activities, called timing-activities, which require exclusive access to certain
hardware resources. These timing-activities are time-multiplexed to give them the required exclusive
access for a period of time. This is called a timing-event. Such timing-activities are Bluetooth Low Energy
role events like events for Central roles and Peripheral roles, Flash memory APl usage, and Radio Timeslot
API timeslots.

If timing-events collide, their scheduling is determined by a priority system. If timing-activity A needs a
timing-event at a time that overlaps with timing-activity B, and timing-activity A has higher priority, timing-
activity A will get the timing-event. Activity B will be blocked and its timing-event will be rescheduled for a
later time. If both timing-activity A and timing-activity B have the same priority, the timing-activity which
was requested first will get the timing-event.

The timing-activities run to completion and cannot be preempted by other timing-activities, even if the
timing-activity trying to preempt has a higher priority. This is the case, for example, when timing-activity A
and timing-activity B request a timing-event at overlapping times with the same priority. Timing-activity A
gets the timing-event because it requested it earlier than timing-activity B. If timing-activity B increased its
priority and requested again, it would only get the timing-event if timing-activity A had not already started
and there was enough time to change the timing-event schedule.

Note: The figures in this chapter do not illustrate all packets that are sent over the air. See
Bluetooth Core Specification for the complete sequence of packets.

15.1 SoftDevice timing-activities and priorities

The SoftDevice supports multiple connections, an Advertiser or Broadcaster, and an Observer or Scanner
simultaneously. In addition to these Bluetooth Low Energy roles, Flash memory API, QoS channel survey,
and Radio Timeslot API can also run simultaneously.

Advertiser and broadcaster timing-events are scheduled as early as possible. Peripheral link timing-events
follow the timings dictated by the connected peer. Central link timing-events are added relative to already
running central link timing-events. Peripheral role timing-events (peripheral link timing-event, advertiser/
broadcaster timing-event) and central role timing-events (central link timing-event, initiator/scanner
timing-event) are scheduled independently and so may occur at the same time and collide. Similarly, Flash
access timing-event and Radio Timeslot timing-event are scheduled independently and so may occur at
the same time and collide. QoS channel survey timing-event has the lowest priority. If channel survey is
running in parallel with any of the above timing-activities, the average survey interval may become longer.

The different timing-activities have different priorities at different times, dependent upon their state. As
an example, if a connection as a Peripheral is about to reach supervision time-out, it will block all other
timing-activities and get the timing-event it requests. In this case, all other timing-activities will be blocked
if they overlap with the connection timing-event, and they will have to be rescheduled. The following table
summarizes the priorities.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 70


https://www.bluetooth.com/specifications/bluetooth-core-specification

Scheduling

Priority (Decreasing order) Role state
First priority e Central connections that are about to time out
e Peripheral connection setup (waiting for ack
from peer)
¢ Peripheral connections that are about to time
out
Second priority e Central connection setup (waiting for ack from
peer)
e |nitiator

e Connectable advertiser/Broadcaster/Scanner
which has been blocked consecutively for a few
times

e Scanner which is receiving an advertising packet
on a secondary advertising channel

Third priority  All Bluetooth Low Energy roles in states other
than above run with this priority

¢ Flash access after it has been blocked
consecutively for a few times

¢ Radio Timeslot with high priority

Fourth priority e Flash access

e Radio Timeslot with normal priority

Last priority e QoS channel survey

Table 30: Scheduling priorities

15.2 Initiator timing

This section introduces the different situations that happen with the Initiator when establishing a
connection.

When establishing a connection with no other connections active, the Initiator will establish the
connection in the minimum time and allocate the first central link connection event transmitWindowDelay
after the connect request was sent, as shown in the following figure.

Initiator

<O>»
om>IO
O
O

connectioninterval

transmitWindowDelay
Figure 25: Initiator - first connection

When establishing a new connection with other connections already made as a Central, the Initiator will
start asynchronously to the connected link timing-events and schedule the new central connection’s first
timing-event in any free time between existing central timing-events or after the existing central timing-
events. Central link timing-events will be scheduled close to each other (without any free time between

them). The minimum time between the start of two central role timing-events is the event length of

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 71



Scheduling

the central role to which the first timing-event belongs. This minimum time is referred to as teyent- The
following figure illustrates the case of establishing a new central connection with one central connection

already running.

Delay + itWi Offset

l :

tevent-co

<

i CE tevent-cn
S

Connection Interval

jlo m o

I
A
|_g| Initiator \D/

tevent-co

Figure 26: Initiator - one central connection running

Note: The Initiator is scheduled asynchronously to any other role (and any other timing-activity)
and assigned higher priority to ensure faster connection setup.

When a central link disconnects, the timings of other central link timing-events remain unchanged.
The following figure illustrates the case when central link C1 is disconnected, which results in free time

between CO and C2.

Connection Interval

l—
~

=
BIEIBIE 4 [ .

=1 = <=

tevent-co tevent-c2 tevent-co tevent-c2
tevent-c1 tevent-c3 tevent-c3

Figure 27: Initiator - free time due to disconnection

When establishing a new connection in cases where free time is available between already running central
link timing-events, best-fit algorithm is used to find which free time space should be used. Figure 28:
Initiator - one or more connections as a Central on page 73 illustrates the case when all existing central
connections have the same connection interval and the initiator timing-event starts around the same time
as the 1st central connection (CO) timing-event in the schedule. There is available time between C1-C2
and between C2—-C3. A timing-event for new a connection, Cn, is scheduled in the available time between

C2—C3 because that is the best fit for Cn.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 72



Scheduling

Connection Interval

Offset

Delay +

<]

[} C| C C - AMlr [} C C C
Elk [ e HEI AL
tevent-co tevent-c2 tevent-c3 tevent-co tevent.c2 tevent.c3
}61 """ e }e‘
tevent-C1 E (2: E E g; tevent-c1 tevent.cn

Figure 28: Initiator - one or more connections as a Central

Figure 29: Initiator - free time not enough on page 73 illustrates the case when any free time between
existing central link timing-events is not long enough to fit the new connection. The new central link
timing-event is placed after all running central link timing-events in this case.

Connection Interval

Delay +

Offset

|
T

C C (e} C . Allr C C| (e} C
EIGEEENE N I GG
teventco tevent-c2 tevenecs toventco tevent.c2 tevent.c3

= T = S

P2 i3
teventer —Lb il LE L tevent.c1 tevent.cn

Figure 29: Initiator - free time not enough

When establishing connections to newly discovered devices, the Scanner may be used for discovery
followed by the Initiator. In Figure 30: Initiator - fast connection on page 73, the Initiator is started
directly after discovering a new device to connect as fast as possible to that device. The Initiator will
always start asynchronously to the connected link events. The result is some link timing-events being
dropped while the initiator timing-event runs. Link timing-events scheduled in the transmit window
offset will not be dropped (C1). In this case, time between CO—C1 is available and is allocated for the new

connection (Cn).

* Start initiator

|
c c Al | c c c c
s D Initiator ~ $Di[3
0 1 e aer S |1 0 n 1
] \ >
teveni tevenl tevent te\/er\t
——
* Advertiser report | c |
* Stop scanner event 0]
| Note: In this example all connections have
-

same bandwidth and hence same tevent

—

Figure 30: Initiator - fast connection

15.3 Connection timing as a Central

Central link timing-events are added relative to already running central link timing-events.

Central link timing-events are offset from each other by teyent depending on the configuration of the
connection. For details about teyent, S€€ Initiator timing on page 71.
> I

NORDIC"

SEMICONDUCTOR

4383 110v7.0 73



Scheduling

Figure 31: Multilink scheduling - one or more connections as a Central, factored intervals on page 74
shows a scenario where two central links are established. CO timing-events correspond to the first Central
connection, and C1 timing-events correspond to the second Central connection. C1 timing-events are
initially offset from CO timing-events by teyent-co- In this example, C1 has exactly double the connection
interval of CO (the connection intervals have a common factor which is “connectioninterval 0”), so the
timing-events remain forever offset by teyent-co-

C C | connectioninterval O C connectioninterval 0 C C
0 1 0

connectioninterval 1

== ==

tevent-co tevent-co

\/

Figure 31: Multilink scheduling - one or more connections as a Central, factored intervals

In Figure 32: Multilink scheduling - one or more connections as a Central, unfactored intervals on page
74 the connection intervals do not have a common factor. This connection parameter configuration

is possible, though this will result in dropped packets when events overlap. In this scenario, the second
timing-event shown for C1 is dropped because it collides with the CO timing-event.

c C connectioninterval 0 C connectioninterval 0 C c
0 1 10 1 0
connectioninterval 1 ! connectioninterval 1 o
}H r—n- Ll
t | |
event-CO | |
| c |
1
| |
[

Figure 32: Multilink scheduling - one or more connections as a Central, unfactored intervals

Figure 33: Multilink scheduling with eight connections as a Central and minimum interval on page 74
shows eight concurrent links as a Central with an event length of 2.5 ms and a connection interval of
20 ms. In this case, all eight Centrals will have a connection event within the 20 ms interval, and the
connection events will be 2.5 ms apart.

connectioninterval (= 8*toen)

C| |C| |C||C| [C||C| |C||C||C
O (1] (2| (3] |4| |5 |6] |7]| [0 ===

tevent

P time

Note: All connections have same (minimum) teyent
Figure 33: Multilink scheduling with eight connections as a Central and minimum interval

Figure 34: Multilink scheduling of connections as a Central and interval > min on page 75 shows a
scenario similar to the one illustrated above except the connection interval is longer than 20 ms, and
Central 1 and 4 has been disconnected or does not have a timing-event in this time period. It shows the
idle time during a connection interval and that the timings of central link timing-events are not affected if
other central links disconnect.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 74



Scheduling

connectioninterval (> 8*teyenms)

| 8RR 8 BR R

2* teven, 2 'event tevem 2% tmm 2* teven. tevem

» time
Note All connectlons have same (mlnlmum) tovent

Figure 34: Multilink scheduling of connections as a Central and interval > min

15.4 Scanner timing

Scanning is a periodic activity where the SoftDevice listens for packets from advertisers. When the
SoftDevice starts scanning, it will listen for packets on the primary advertising channels. If the SoftDevice is
configured to accept extended advertising packets, and it receives a packet with a pointer to a secondary
advertising channel, it will continue to scan on this channel to receive the auxiliary packet.

15.4.1 Primary channel scanner timing

The following figure shows that when scanning for advertisers with no active connections, the scan
interval and window can be any value within the Bluetooth Core Specification.

Scanner Scanner

» time

scanWindow

scanlinterval

Figure 35: Scanner timing - no active connections

A primary channel scanner timing-event is always placed after the central link timing-events. Figure 36:
Scanner timing - one or more connections as a Central on page 75 shows that when there are one or
more active connections, the scanner or observer role timing-event will be placed after the link timing-
events. With scaninterval equal to the connectioninterval and a scanWindow < (connectioninterval -
(5 tevent + tScanReserved) ), scanning will proceed without overlapping with central link timing-events.

connectioninterval

cl|C C C (e}
2 H C4 5 C6 Scanner 0

- time

©0
~

3 (tevent-cx) scanWindow

tscanReserved

Figure 36: Scanner timing - one or more connections as a Central

The following figure shows a scenario where free time is available between link timing-events, but still the
scanner timing-event is placed after all connections.

connectioninterval

1
Clic c c Scanner c
ol |1 2 3 Of ===

- time

S >t<>{
scanWindow

tscanReserved

Figure 37: Scanner timing - always after connections

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 75


https://www.bluetooth.com/specifications/bluetooth-core-specification

Scheduling

The following figure shows a Scanner with a long scanWindow which will cause some connection timing-
events to be dropped.

connectioninterval

Scanner

» time

Ny
. Aé
v

event-CO scanWindow

EXs

r—
L—

Figure 38: Scanner timing - one connection, long window

15.4.2 Secondary channel scanner timing

The SoftDevice will schedule a new secondary channel scanner timing-event if it receives a packet on a
primary channel that points to a secondary channel or when it receives a secondary channel packet that
points to another secondary packet. When the SoftDevice starts secondary channel scanning, it will pause
all ongoing primary channel timing-events. It will resume primary channel scanning after it has completed
all secondary channel timing-events.

Scanner Scanner Scanner Scanner
primary secondary primary primary
» time
‘ scanWindow ‘
< =1
scanlinterval

Figure 39: Scanner timing - a secondary scan timing-event pauses primary channel scanning

Scanner Scanner Scanner
primary secondary primary
‘ > time
scanWindow ‘
< =1
scanlinterval

Figure 40: Scanner timing - a secondary scan timing-event does not have to fit within the scanWindow

Scanner Scanner Scanner
primary secondary primary

» time

scanWindow

scanlinterval

Figure 41: Scanner timing - a secondary scan timing-event
may occur between two primary channel timing-events

Scanner Scanner Scanner Scanner
primary secondary secondary primary
>
»>
= ~| - ~]
I = 1 t
scaninterval scanlinterval ime
jm—————————
. [ .
scanWindow | | scanWindow
| Scanner |
! primary !
|

Figure 42: Scanner timing - secondary scan timing-events will pause primary channel scanning

~

NORDIC"

SEMICONDUCTOR

4383 110v7.0 76



Scheduling

Secondary channel timing-events may be interleaved by other timing activities. The advertiser decides
when the secondary channel packets are sent. Therefore, the scanner cannot decide when the secondary
scanning timing-events will occur.

Scanner
primary

Gl

Scanner C||C
secondary [ |4 ||5

Scanner
primary

scanWindow

scanlinterval

[ |
Q
N

| |

\/

time

Figure 43: Scanner timing - secondary scan timing-events will interleave with connections

15.5 Advertiser timing

Advertiser is started as early as possible, after a random delay in the range of 3 - 13 ms, asynchronously
to any other role timing-events. If no roles are running, advertiser timing-events are able to start and run

without any collision.

=

random delay

< o X

Adv interval + random delay

<a>»

Adv interval + random delay A

sd_ble_gap_adv_start()

Figure 44: Advertiser

\/

When other role timing-events are running in addition, the advertiser role timing-event may collide with
those. The following figure shows a scenario of Advertiser colliding with Peripheral (P).

>

A A

P d| |P d P
\") \"

[ r=

[ (N

I IA|

IP| Id|

[ Iy

[ I

| I— | I—

Figure 45: Advertiser collision

A directed high duty cycle advertiser is different compared to other advertiser types because it is not
periodic. The scheduling of the single timing-event required by a directed advertiser is done in the same
way as other advertiser type timing-events. A directed high duty cycle advertiser timing-event is also
started as early as possible, and its priority (refer to Table 30: Scheduling priorities on page 71) is

raised if it is blocked by other role timing-events multiple times.

4383 110v7.0

77

N

NORDIC"

SEMICONDUCTOR



Scheduling

Extended advertising events are scheduled as single timing-events. The events can include packets sent on
both the primary and the secondary advertising channels. The duration of an extended advertising event
depends on the mode, data length, and on which PHY the advertising packets are sent. The SoftDevice will
send as few secondary advertising channel packets as possible with each packet containing the maximum
allowed amount of data. The packets are sent with an AUX frame space of 330 ps.

15.6 Peripheral connection setup and connection timing

Peripheral link timing-events are added as per the timing dictated by peer Central.

transmitWindowDelay + WO Cl Cl
I
lc
A | R
ADV | D E P P P
\Y
 Q

Figure 46: Peripheral connection setup and connection

Peripheral link timing-events may collide with any other running role timing-events because the timing of
the connection as a Peripheral is dictated by the peer.

| transmitWindowDelay + WO
I
NE A
ADV | D | E P D P
\% \%
L Q

\

v

=
<
T 2*Cl

Advertiser
started

again :A|
|

r=i

|
o 1Al
: D, 1P 1D
First advertiser event Vi I \z

N |
blocked by peripheral P [ _!
timing-event.

r—-
L——

Figure 47: Peripheral connection setup and connection with collision

4383_110v7.0 78 >

NORDIC"

SEMICONDUCTOR



Scheduling

Value

tslaveNominalWindow

Description

Listening window on slave to receive first
packet in a connection event

Value (ps)

2 * (1le + 16 + 250 + 250)

Assuming 250 ppm sleep clock accuracy
on both slave and master with 1-second
connection interval, 16 is the sleep clock
instantaneous timing on both master
and slave.

TsjaveEventNominal

Nominal event length for slave link

tsiaveNominalWindow T tevent

Refer to Table 22: Radio Notification
notation and terminology on page 53
and Table 23: Bluetooth Low Energy
Radio Notification timing ranges on page
54.

tsiaveEventMax

Maximum event length for slave link

tsiqveEventNominal T 7 1S

Where 7 ms is added for the maximum
listening window for 500 ppm sleep
clock accuracy on both master and slave
with 4-second connection interval.

The listening window is dynamic and is
therefore added so that t,,4i, remains
constant.

TadvEventMax

Maximum event length for advertiser
(all types except directed high duty cycle
advertiser) role

tprep (max) + tevent (max for adv role except

directed high duty cycle adv)

Refer to Table 22: Radio Notification
notation and terminology on page 53
and Table 23: Bluetooth Low Energy
Radio Notification timing ranges on page
54.

Table 31: Peripheral role timing ranges

15.7 Connection timing with Connection Event Length

Extension

Central and peripheral links can extend the event if there is radio time available.

The connection event is the time within a timing-event reserved for sending or receiving packets. The
SoftDevice can be enabled to dynamically extend the connection event length to fit the maximum number
of packets inside the connection event before the timing-event must be ended. The time extended will be
in one packet pair at a time until the maximum extend time is reached. The connection event cannot be
longer than the connection interval; the connection event will then end and the next connection event
will begin. A connection event cannot be extended if it will collide with another timing-event. The extend
request will ignore the priorities of the timing-events.

To get the maximum bandwidth on a single link, it is recommended to enable Connection Event Length
Extension and increase the connection interval. This will allow the SoftDevice to send more packets within
the event and limit the overhead of processing between connection events. For more information, see
Suggested intervals and windows on page 80.

4383 110v7.0

79

N

NORDIC"

SEMICONDUCTOR




Scheduling

Multilink scheduling with connection event length extension can increase the bandwidth for multiple
links by utilizing idle time between connection events. An example of this is shown in Figure 48: Multilink
scheduling and connection event length extension on page 80. Here C1 can utilize the free time left

by a previously disconnected link C2, C3 has idle time as the last central link, and CO is benefitting from
having a connection interval set to half of that of C1 and C3.

] Ty et R connectioninterval 1+ [ =/ 177777
\ T . 1 1 >
C C i c ' C connectioninterval 3 E C C E i C
1
o |1 |3 o Plo| |1 Lol 3
E uonpectionlnterval 0 : connectioninterval Oﬁ i E
. -
| | | |
I | tevent.ct | 1 tevent-c1 <= toventct = toventcr
teventco <=1 teventcz <= teventco == teventcz <=

Figure 48: Multilink scheduling and connection event length extension

15.8 Flash APl timing

Flash timing-activity is a one-time activity with no periodicity, as opposed to Bluetooth Low Energy role
timing-activities. Hence, the flash timing-event is scheduled in any available time left between other
timing-events.

To run efficiently with other timing-activities, the Flash APl will run in a low priority. Other timing-activities
running in higher priority can collide with flash timing-events. Refer to Table 30: Scheduling priorities

on page 71 for details on priority of timing-activities, which is used in case of collision. Flash timing-
activity will use higher priority if it has been blocked many times by other timing-activities. Flash timing-
activity may not get a timing-event at all if other timing-events occupy most of the time and use priority
higher than flash timing-activity. To avoid a long wait time while using Flash API, flash timing-activity will
fail in case it cannot get a timing-event before a timeout.

15.9 Timeslot APl timing

Radio Timeslot API timing-activity is scheduled independently of any other timing activity, hence it can
collide with any other timing-activity in the SoftDevice.

Refer to Table 30: Scheduling priorities on page 71 for details on priority of timing-activities, which is
used in case of collision. If the requested timing-event collides with already scheduled timing-events with
equal or higher priority, the request will be denied (blocked). If a later arriving timing-activity of higher
priority causes a collision, the request will be canceled. However, a timing-event that has already started
cannot be interrupted or canceled.

If the timeslot is requested as earliest possible, Timeslot timing-event is scheduled in any available free
time. Hence there is less probability of collision with earliest possible request. Timeslot API timing-activity
has two configurable priorities. To run efficiently with other timing-activities, the Timeslot API should run
in lowest possible priority. It can be configured to use higher priority if it has been blocked many times by
other timing-activities and is in a critical state.

15.10 Suggested intervals and windows

This section provides recommendations for choosing intervals and windows for connection and scanning
on LE 1M PHY unless specified otherwise.

The time required to fit one timing-event of all active central links is equal to the sum of teyent Of all active
central links. Therefore, 20 link timing-events can complete in Yteyent-cx, Which is 50 ms for connections
with a 2.5 ms event length.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 80



Scheduling

This does not leave sufficient time in the schedule for scanning or initiating new connections (when the
number of connections already established is less than the maximum). Scanner, observer, and initiator
events can therefore cause connection packets to be dropped.

It is recommended that all connections have intervals that have a common factor. This common factor
should be greater than or equal to Steyent-cx. FOr example, for eight connections with an event length of
2.5 ms, the lowest recommended connection interval is 20 ms. This means all connections would then
have a connection interval of 20 ms or a multiple of 20 ms, such as 40 ms, 60 ms, and so on.

If short connection intervals are not essential to the application and there is a need to have a Scanner
running at the same time as connections, then it is possible to avoid dropping packets on any connection
as a Central by having a connection interval larger than Steyent-cx + SCANWINdow + tscanreserved- The Initiator
is scheduled asynchronously to any other role (and any other timing-activity), hence the initiator timing-
event might collide with other timing-events even if the above recommendation is followed.

For example, setting the connection interval to 43.75 ms will allow three connection events with event
length of 3.75 ms and a scan window of 31.0 ms, which is sufficient to ensure advertising packets from a
20 ms (nominal) advertiser hitting and being responded to within the window.

When the SoftDevice is configured to do extended scanning, it is able to receive auxiliary packets outside
of the configured scan window. Therefore, to ensure that the SoftDevice receives packets from an
advertiser, the scan window should be configured to be long enough to receive three primary channel
packets. For an advertiser configured with an advertising interval of 50 ms, on LE 1M PHY this corresponds
to 52.5 ms.

The event length should be used together with the connection interval to set the desired bandwidth of
the connection. When both peripheral and central roles are running, it is recommended to use the event
length to ensure a fair allocation of the available Radio time resources between the existing roles and then
enable Connection Event Length Extension to improve the bandwidth if possible.

When long LL Data Channel PDUs are in use, it is recommended to increase the event length of a
connection. For example, LL Data Channel PDUs are by default 27 bytes in size. With an event length of 7.5
ms, it is possible to send seven full-sized packet pairs in one connection event. Therefore, when increasing
the Link Layer Data Channel PDU size to 251 bytes, the event length should be increased to 33.75 ms. To
calculate how much time should be added (in ms), use the following formula: ( (size- 27) * 8 * 2

* pairs) / 1000.

The same formula can be used for the Connected roles on LE 2M PHY. On LE 2M PHY, it is possible to fit
eleven 27 bytes packet pairs in one connection event of 7.5 ms.

To summarize, a recommended configuration for operation without dropped packets for cases of only
central roles running is that all central role intervals (i.e. connection interval, scanner/observer/initiator
intervals) should have a common factor. This common factor should be greater than or equal to 5 teyent-cx +
scanWindow + tsconpeserved-

When the SoftDevice is configured to do extended scanning, it is able to receive auxiliary packets outside
its configured scan window. The Scanner uses asynchronous timing-events to receive such auxiliary
packets. Therefore, in this configuration, there may be role collisions, which will result in packets being
dropped.

Peripheral roles use the same time space as all other roles (including any other peripheral and central
roles). Hence, a collision-free schedule cannot be guaranteed if a peripheral role is running along with
any other role. A recommended configuration for having fewer colliding Peripherals is to set a short event
length and enable the Connection Event Length Extension in the SoftDevice (see Connection timing with
Connection Event Length Extension on page 79).

The probability of collision can be reduced (though not eliminated) if the central role link parameters are
set as suggested in this section, and the following rules are applied for all roles:

¢ Interval of all roles have a common factor which is greater than or equal to S'teyent-cx +  (tscanreserved T+

N

NORDIC"

SEMICONDUCTOR

ScanWindow) + tsiguetventNominal + tAdvEventMax

4383 110v7.0 81



Scheduling

Note: tgaverventNominal €an be used in the above equation in most cases, but should be replaced
by tsiaveeventmax fOr cases where links as a Peripheral can have worst-case sleep clock accuracy
and longer connection interval.

¢ Broadcaster and advertiser roles also follow the constraint that their intervals can be factored by the
smallest connection interval.

Note: Directed high-duty cycle advertiser is not considered here because it is not a periodic
event.

If only Bluetooth Low Energy role events are running and the above conditions are met, the worst-case
collision scenario will be Broadcaster, one or more connections as Peripheral, Initiator, and one or more
connections as Central colliding in time. The number of colliding connections as Central depends on the
maximum timing-event length of other asynchronous timing-activities. For example, there will be two
Central connection collisions if all connections have the same bandwidth and both the initiator scan
window and the teyent for the Broadcaster are approximately equal to the teyent Of the Central connections.
The following figure shows this case of collision.

Central links Interval Central links Interval

= ~| ~|
Co C1 Cc2 Co Initiator Cco P
Peripheral link interval = 2*Central links Interval I
= i ~|
; P C1 C2 C1 C2
AR
Initiator | ! Initiator |
boneanoeeact Initiator interval = Central links Interval Initiator interval =Central links Interval Lo
= ~| ~|
Adv Adv
Advertiser interval + random delay >= 2*Central links Interval
(Advertiser interval = 2*Central links Interval)
’\

Figure 49: Worst-case collision of Bluetooth Low Energy roles

These collisions will result in collision resolution through the priority mechanism. The worst-case collision
will be reduced if any of the above roles are not running. For example, when only Central and Peripheral
connections are running, in the worst case each role will get a timing event 50% of the time because they
have the same priority. (Refer to Table 30: Scheduling priorities on page 71). Figure 50: Three links
running as a Central and one Peripheral on page 83 shows this case of collision.

Collision resolution may cause bad performance if suboptimal intervals are chosen. For example, a scanner
that is configured with a scan interval of 2000 ms and a scan window of 1000 ms will collide with an
advertiser with an advertising interval of 50 ms. In this case, the advertiser that schedules events often
compared to the scanner will raise its priority and may cause the scanner to receive less radio time than
expected.

Note: These are worst-case collision numbers, and an average case will most likely be better.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 82



Scheduling

Extra listening window for accommodating
extra drift due to previous dropped event

I Central links Interval

| |

[ |
Peripheral link Interval P

with adjustment to accommodate own and peer master's sleep clock drift

Figure 50: Three links running as a Central and one Peripheral

Timing-activities other than Bluetooth Low Energy role events, such as Flash access and Radio Timeslot
API, also use the same time space as all other timing-activities. Hence, they will also add up to the worst-
case collision scenario.

Dropped packets are possible due to collision between different roles as explained above. Application
should tolerate dropped packets by setting the supervision time-out for connections long enough to avoid
loss of connection when packets are dropped. For example, in a case where only three central connections
and one peripheral connection are running, in the worst case, each role will get a timing-event 50% of the
time. To accommodate this packet drop, the application should set the supervision time-out to twice the
size it would have set if only either central or peripheral role was running.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 83



16

Interrupt model and processor
availability

This chapter documents the SoftDevice interrupt model, how interrupts are forwarded to the application,
and describes how long the processor is used by the SoftDevice in different priority levels.

16.1 Exception model

As the SoftDevice, including the MBR, needs to handle some interrupts, all interrupts are routed through
the MBR and SoftDevice. The ones that should be handled by the application are forwarded and the rest
are handled within the SoftDevice itself. This section describes the interrupt forwarding mechanism.

For more information on the MBR, see Master boot record and bootloader on page 62.

16.1.1 Interrupt forwarding to the application

The forwarding of interrupts to the application depends on the state of the SoftDevice.

At the lowest level, the MBR receives all interrupts and forwards them to the SoftDevice regardless of
whether the SoftDevice is enabled or not. The use of a bootloader introduces some exceptions to this. See
Master boot record and bootloader on page 62.

Some peripherals and their respective interrupt numbers are reserved for use by the SoftDevice (see
Hardware peripherals on page 25). Any interrupt handler defined by the application for these interrupts
will not be called as long as the SoftDevice is enabled. When the SoftDevice is disabled, these interrupts
will be forwarded to the application.

The SVC interrupt is always intercepted by the SoftDevice regardless of whether it is enabled or disabled.
The SoftDevice inspects the SVC number, and if it is equal or greater than 0x10, the interrupt is processed
by the SoftDevice. SVC numbers below 0x10 are forwarded to the application's SVC interrupt handler. This
allows the application to make use of a range of SVC numbers for its own purpose, for example, for an
RTOS.

Interrupts not used by the SoftDevice are always forwarded to the application.

For the SoftDevice to locate the application interrupt vectors, the application must define its interrupt
vector table at the bottom of the Application Flash Region illustrated in Figure 24: Memory resource
map on page 67. When the base address of the application code is directly after the top address of
the SoftDevice, the code can be developed as a standard ARM Cortex -M4 application project with the
compiler creating the interrupt vector table.

16.1.2 Interrupt latency due to System on Chip framework

Latency, additional to ARM Cortex -M4 hardware architecture latency, is introduced by SoftDevice logic to
manage interrupt events.

This latency occurs when an interrupt is forwarded to the application from the SoftDevice and is part of
the minimum latency for each application interrupt. This is the latency added by the interrupt forwarding
latency alone. The maximum application interrupt latency is dependent on SoftDevice activity, as
described in section Processor usage patterns and availability on page 87.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 84



Interrupt model and processor availability

Interrupt SoftDevice enabled SoftDevice disabled
Open peripheral interrupt <4pus <2us
Blocked or restricted peripheral interrupt (only N/A <2us

forwarded when SoftDevice disabled)

Application SVC interrupt <2us <2us

Table 32: Additional latency due to SoftDevice and MBR forwarding interrupts

16.2 Interrupt priority levels

This section gives an overview of interrupt levels used by the SoftDevice and the interrupt levels that are
available for the application.

To implement the SoftDevice AP/ as SVCs (see Application programming interface on page 17) and ensure
that embedded protocol real-time requirements are met independently of the application processing,
the SoftDevice implements an interrupt model where application interrupts and SoftDevice interrupts
are interwoven. This model will result in application interrupts being postponed or preempted, leading to
longer perceived application interrupt latency and interrupt execution times.

The application must take care to select the correct interrupt priorities for application events according
to the guidelines that follow. The NVIC AP/ to the SoC Library supports safe configuration of interrupt
priorities from the application.

The nRF52 SoC has eight configurable interrupt priorities ranging from 0 to 7 (with 0 being highest
priority). On reset, all interrupts are configured with the highest priority (0).

The SoftDevice reserves and uses the following priority levels, which must remain unused by the
application programmer:

¢ Level Ois used for the SoftDevice's timing critical processing.

¢ Level 1is used for handling the memory isolation and run time protection, see Memory isolation and
runtime protection on page 20.

e Level 4 is used by higher-level deferrable tasks and the AP/ functions executed as SVC interrupts.

The application can use the remaining interrupt priority levels, in addition to the main, or thread, context.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 85



Interrupt model and processor availability

Cortex M4
Priorities
nghgst 3 [ Reset }
priority
i i -2 [ Non-maskable interrupt }
-1 [ Hard Fault }
0 [SoftDevice timing-critical}
1 SoftDevice memory
protection
2 [ Application interrupts }
3 [ Application interrupts }
4 SoftDevice API calls and
non-time-critical processing
5 [ Application interrupts }
6 [ Application interrupts }
N / 7 [ Application interrupts }
Lowest
o Thread Main
priority

Figure 51: Exception model

As seen from Figure 51: Exception model on page 86, the application has available priority level 2 and

3, located between the higher and lower priority levels reserved by the SoftDevice. This enables a low-
latency application interrupt to support fast sensor interfaces. An application interrupt at priority level 2
or 3 will only experience latency from SoftDevice interrupts at priority levels 0 and 1, while application
interrupts at priority levels 5, 6, or 7 can experience latency from all SoftDevice priority levels.

Note: The priorities of the interrupts reserved by the SoftDevice cannot be changed. This includes
the SVC interrupt. Handlers running at a priority level higher than 4 (lower numerical priority value)
have neither access to SoftDevice functions nor to application specific SVCs or RTOS functions
running at lower priority levels (higher numerical priority values).

The following figure shows an example of how interrupts with different priorities may run and preempt
each other. Some priority levels are left out for clarity.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 86



Interrupt model and processor availability

SoftDevice - Exception examples

Priorities A API calls Sensor interrupts Protocol event
SoftDevice timing-critical —
ilnlemal
Application interrupts — {protocol
. - . Lo isignal
High priority High priority | !
application application |
interrupt interrupt|
SoftDevice API calls and | A A Protocol L 2
non-time-critical processing ] [ ! interrupt 1
{ Application
APl call | |event
| | | signal
Application interrupts — Y API call | .
Low ;ﬁriori(y | |
application
interrupt
-

Figure 52: SoftDevice exception examples

16.3 Processor usage patterns and availability

This section gives an overview of the processor usage patterns for features of the SoftDevice and the
processor availability to the application in stated scenarios.

The SoftDevice's processor use will also affect the maximum interrupt latency for application interrupts of
lower priority (higher numerical value for the interrupt priority). The maximum interrupt processing time
for the different priority levels in this chapter can be used to calculate the worst-case interrupt latency the
application will have to handle when the SoftDevice is used in various scenarios.

In the following scenarios, tisg(x) denotes interrupt processing time at priority level x, and tsg(x) denotes
time between interrupts at priority level x.

16.3.1 Flash APl processor usage patterns

This section describes the processor availability and interrupt processing time for the SoftDevice when the
Flash APl is being used.

Flash erase/write events

Priorities A

SoftDevice timing-critical

Flash erase/write

Application interrupts

tisr()

SoftDevice API calls and
non-time-critical processing

tisr4)
Application interrupts

Figure 53: Flash API activity (some priority levels left out for clarity)

When using the Flash API, the pattern of SoftDevice CPU activity at interrupt priority level O is as follows:

1. Aninterrupt at priority level O sets up and performs the flash activity. The CPU is halted for most of the
time in this interrupt.
> I

NORDIC"

SEMICONDUCTOR

4383 110v7.0 87



Interrupt model and processor availability

2. After the first interrupt is complete, another interrupt at priority level 4 cleans up after the flash
operation.

SoftDevice processing activity in the different priority levels during flash erase and write is outlined in the
table below.

Parameter Description Min Typical Max

tisR(0),FlashErase Interrupt processing when 90 ms
erasing a flash page. The CPU is
halted most of the length of this
interrupt.

tisRr(0), Flashwrite Interrupt processing when writing 500 ps
one or more words to flash. The
CPU is halted most of the length
of this interrupt. The Max time
provided is for writing one word.
When writing more than one
word, please see the Product
Specification in Table 1: Additional
documentation on page 14 to get
the time to write one word and
add it to the Max time provided in
this table.

tisr(4) Priority level 4 interrupt at the end 10 us
of flash write or erase.

Table 33: Processor usage for the Flash API

16.3.2 Radio Timeslot APl processor usage patterns

This section describes the processor availability and interrupt processing time for the SoftDevice when the
Radio Timeslot APl is being used.

See Radio Timeslot APl on page 34 for more information on the Radio Timeslot API.

Radio timeslot events

Priorities A

SoftDevice timing-critical — — fr— e

Application interrupts tisro) —* -— tisr(o) —™ -
tisro) =™ - tisr() =1 -

SoftDevice API calls and
non-time-critical processing

tisre)
Application interrupts

Radio timeslot prepare
Radio timeslot start/activity
Radio timeslot activity
Radio timeslot activity/end

Thread

A\

Figure 54: Radio Timeslot API activity (some priority levels left out for clarity)

When using the Radio Timeslot API, the pattern of SoftDevice CPU activity at interrupt priority level 0 is as
follows:

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 88




Interrupt model and processor availability

1. If the timeslot was requested with NRF_RADIO_HFCLK_CFG_XTAL_GUARANTEED, there is first an
interrupt that handles the startup of the high-frequency crystal.

2. The interrupt is followed by one or more Radio Timeslot activities. How many and how long these are
is application dependent.

3. When the last of the Radio Timeslot activities is complete, another interrupt at priority level 4 cleans
up after the Radio Timeslot operation.

SoftDevice processing activity at different priority levels during use of Radio Timeslot APl is outlined in the
table below.

Parameter Description Min Typical Max

tisr(0),RadioTimeslotPrepare Interrupt processing when starting 9 s
up the high-frequency crystal

tisR(0),RadioTimeslotActivity The application's processing in
the timeslot. The length of this is
application dependent.

tisr(a) Priority level 4 interrupt at the end 7 us
of the timeslot

Table 34: Processor usage for the Radio Timeslot AP/

16.3.3 Bluetooth Low Energy processor usage patterns

This section describes the processor availability and interrupt processing time for the SoftDevice when
roles of the Bluetooth Low Energy protocol are running.

16.3.3.1 Bluetooth Low Energy Advertiser (Broadcaster) processor usage

This section describes the processor availability and interrupt processing time for the SoftDevice when the
advertiser (broadcaster) role is running.

Advertiser Events

Priorities A

SoftDevice timing-critical —  tusro) — thisr() — toisr() 3

Application interrupts

tisr) —*  ~— tisro) —>  =*— tisro) —> = *—

SoftDevice API calls and
non-time-critical processing

tisro) —» - - tisra) - tigre)

Application interrupts

Radio prepare
Radio start

Radio processing
Post-processing

Thread L e
X TX/RX

A\

Figure 55: Advertising events (some priority levels left out for clarity)

When advertising, the pattern of SoftDevice processing activity for each advertising interval at interrupt
priority level O is as follows:

1. Aninterrupt (Radio prepare) sets up and prepares the software and hardware for this advertising
event.

2. Ashortinterrupt occurs when the Radio starts sending the first advertising packet.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 89




Interrupt model and processor availability

3. Depending on the type of advertising, there may be one or more instances of Radio processing
(including processing in priority level 4) and further receptions/transmissions.

4. Advertising ends with post processing at interrupt priority level 0 and some interrupt priority level 4
activity.

SoftDevice processing activity in the different priority levels when advertising is outlined in Table 35:
Processor usage when advertising on page 90. The typical case is seen when advertising without using

a whitelist and without receiving scan or connect requests. The max case can be seen when advertising
with a full whitelist, using private addresses, receiving scan and connect requests while having a maximum
number of connections and utilizing the Radio Timeslot API, Flash memory API, using PA/LNA, and QoS
channel survey module at the same time.

Parameter Description Min Typical Max

tisr(0),RadioPrepare Processing when preparing the 32 us 50 us
radio for advertising

tisR(0),RadioStart Processing when starting the 12 ps 20 us
advertising

tisr(0),RadioProcessing Processing after sending/receiving 54 ps 75 ps
a packet

tisr(0), PostProcessing Processing at the end of an 77 us 128 us

advertising event

thisr(0) Distance between interrupts 40 ps >170 us
during advertising

tisr(a) Priority level 4 interrupt at the end 28 us
of an advertising event

Table 35: Processor usage when advertising

From the table we can calculate a typical processing time for one advertisement event sending three
advertisement packets to be:

tisr(0),RadioPrepare T tisr(0),Radiostart T 2 * tisp(0),RadioProcessing + LISR(0),PostProcessing T tisr(4) = 257 us

That means typically more than 99% of the processor time is available to the application when advertising
with a 100 ms interval.

16.3.3.2 Bluetooth Low Energy peripheral connection processor usage

This section describes the processor availability and interrupt processing time for the SoftDevice in a
peripheral connection event.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 90




Interrupt model and processor availability

Connection Events

Priorities A
SoftDevice timing-critical tusro) ——  tusro) ——  tnisro)
Application interrupts tISR(O)
tisri)—» -~ - >
t|5R(0) — -— tISR(O) — —
SoftDevice API calls and
non-time-critical processing
o
S« - o - -
7] =
g § tisr() 2 tisr@)
Application interrupts % E <} 8
& k7 & e
k) o 29 &
kel el o 193
© o] © o
o o o o
------- -
RX X

\ ]

Figure 56: Peripheral connection events (some priority levels left out for clarity)

In a peripheral connection event, the pattern of SoftDevice processing activity at interrupt priority level 0
is typically as follows:

1.

An interrupt (Radio prepare) sets up and prepares the software and hardware for the connection
event.

. A short interrupt occurs when the Radio starts listening for the first packet.
. When the reception is complete, there is a radio processing interrupt that processes the received

packet and switches the Radio to transmission.

. When the transmission is complete, there is either a radio processing interrupt that switches the Radio

back to reception (and possibly a new transmission after that), or the event ends with post processing.

. After the radio and post processing in priority level 0, the SoftDevice processes any received data

packets, executes any GATT, ATT, or SMP operations, and generates events to the application as
required in priority level 4. The interrupt at this priority level is therefore highly variable based on the
stack operations executed.

SoftDevice processing activity for different priority levels during peripheral connection events is outlined
in Table 36: Processor usage when connected on page 92. The typical case is seen when sending GATT
write commands writing 20 bytes. The max case can be seen when sending and receiving maximum length
packets and initiating encryption, while having a maximum number of connections and utilizing the Radio
Timeslot API, Flash memory API, using PA/LNA, and QoS channel survey module at the same time.

4383 110v7.0 91

N

NORDIC"

SEMICONDUCTOR



Interrupt model and processor availability

Parameter Description Min Typical Max

tisr(0),RadioPrepare Processing when preparing the radio 51 us 65 s
for a connection event

tisR(0),RadioStart Processing when starting the 18 s 24 s
connection event

tisr(0),RadioProcessing Processing after sending or receiving 60 us 67 us
a packet

tisR(0),PostProcessing Processing at the end of a 90 us 250 ps

connection event

thisr(0) Distance between interrupts during | 183 us > 190 ps
a connection event

tisr(a) Priority level 4 interrupt after a 40 ps
packet is sent or received

Table 36: Processor usage when connected

From the table we can calculate a typical processing time for a peripheral connection event where one
packet is sent and received to be:

tlSR(O),RadioPrepare + tlSR(O),RadioStart + tlSR(O),RadioProcessing + tlSR(O),PostProcessing + 2 * tISR(4) = 299 us

That means typically more than 99% of the processor time is available to the application when one
peripheral link is established and one packet is sent in each direction with a 100 ms connection interval.

16.3.3.3 Bluetooth Low Energy scanner and initiator processor usage

This section describes the processor availability and interrupt processing time for the SoftDevice when the
scanner or initiator role is running.

Scanner Events

Priorities A
SoftDevice timing-critical . taisr() P thisr() — thisr() —
Application interrupts
tisr) —* — t‘SR(U) —» -— t,SR(O) —» —
SoftDevice API calls and
non-time-critical processing — —
tisro) — - o™ tisr@) e tisr)
£ | =2 |
o @ 2
© @ 1%}
Application interrupts 53 E 8 2
s > s 2
2 2 e iy
3 3 '3 | 8 |
o 14 | | a |
RX TX/IRX

\

Figure 57: Scanning or initiating (some priority levels left out for clarity)

When scanning or initiating, the pattern of SoftDevice processing activity at interrupt priority level 0 is as
follows:

L

An interrupt (Radio prepare) sets up and prepares the software and hardware for this scanner or
initiator event.

A short interrupt occurs when the Radio starts listening for advertisement packets.

During scanning, there will be zero or more instances of radio processing, depending upon whether
the active role is a Scanner or an Initiator, whether scanning is passive or active, whether advertising

N

NORDIC"

SEMICONDUCTOR

w N

4383 110v7.0 92



Interrupt model and processor availability

packets are received or not, and upon the type of the received advertising packets. Such radio
processing may be followed by the SoftDevice processing at interrupt priority level 4.

4. When the event ends (either by timeout, or if the Initiator receives a connectable advertisement
packet it accepts), the SoftDevice does some Post processing, which may be followed by processing at
interrupt priority level 4.

SoftDevice processing activity in the different priority levels when scanning or initiating is outlined in Table
37: Processor usage for scanning or initiating on page 93. The typical case is seen when scanning or
initiating without using a whitelist and without sending scan or connect requests. The max case can be
seen when scanning or initiating with a full whitelist, using private addresses, sending scan or connect
requests while having a maximum number of connections, and utilizing the Radio Timeslot API, Flash
memory API, using PA/LNA, and QoS channel survey module at the same time.

Parameter Description Min Typical Max

tisr(0),RadioPrepare Processing when preparing the 32 us 60 us
radio for scanning or initiating

tisRr(0),RadioStart Processing when starting the scan 20 ps 25 us
or initiation

tisr(0),RadioProcessing Processing after sending/receiving 60 us 95 us
packet

tisRr(0),PostProcessing Processing at the end of a scanner 79 us 170 ps

or initiator event

thisr(0) Distance between interrupts during | 80 us >1.5ms
scanning
tisr(4) Priority level 4 interrupt at the end 27 ps

of a scanner or initiator event

Table 37: Processor usage for scanning or initiating

From the table we can calculate a typical processing time for one scan event receiving one advertisement
packet to be:

t/SR(O),RadioPrepare + tISR(O),RadioStart + t/SR(O),RadioProcessing + tlSR(O),PostProcessing + t/SR(4) =218 Hus

That means typically more than 99% of the processor time is available to the application when scanning
with a 100 ms interval under these conditions.

16.3.3.4 Bluetooth Low Energy central connection processor usage

This section describes the processor availability and interrupt processing time for the SoftDevice in a
central connection event.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 93




Interrupt model and processor availability

Connection Events

Priorities A
SoftDevice timing-critical tusro) ——  tusro) ——  tnisro)
Application interrupts tISR(O)
tisri)—» -~ - >
t|5R(0) — -— tISR(O) — —
SoftDevice API calls and
non-time-critical processing
o
S« - o - -
7] =
g § tisr() 2 tisr@)
Application interrupts % E <} 8
& k7 & e
k) o 29 &
kel el o 193
© o] © o
o o o o
------- -
TX RX

\ ]

Figure 58: Central connection events (some priority levels left out for clarity)

In a central connection event, the pattern of SoftDevice processing activity at interrupt priority level 0 is
typically as follows:

1. Aninterrupt (Radio prepare) sets up and prepares the software and hardware.

2. Ashort interrupt occurs when the Radio starts transmitting the first packet in the connection event.

3. When the transmission is complete, there is a radio processing interrupt that switches the Radio to
reception.

4. When the reception is complete, there is a radio processing interrupt that processes the received
packet and either switches the Radio back to transmission (and possibly a new reception after that), or
the event ends with post processing.

5. After the priority level 0 processing, the SoftDevice processes any received data packets, executes any
GATT, ATT, or SMP operations, and generates events to the application as required in priority level 4.
The interrupt at this priority level is therefore highly variable based on the stack operations executed.

SoftDevice processing activity in the different priority levels during central connection events is outlined in
Table 38: Processor usage latency when connected on page 95. The typical case is seen when receiving
GATT write commands writing 20 bytes. The max case can be seen when sending and receiving maximum
length packets and initiating encryption, while having a maximum number of connections and utilizing the
Radio Timeslot API, Flash memory API, using PA/LNA, and QoS channel survey module at the same time.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 94



Interrupt model and processor availability

Parameter Description Min Typical Max

tisr(0),RadioPrepare Processing when preparing the 29 ps 65 us
radio for a connection event

tisR(0),RadioStart Processing when starting the 21 ps 25 ps
connection event

tisr(0),RadioProcessing Processing after sending or 30 us 86 us
receiving a packet

tisr(0), PostProcessing Processing at the end of a 90 ps 170 ps
connection event

thisr(0) Distance between connection 183 us > 200 ps
event interrupts

tisr(a) Priority level 4 interrupt after a 40 ps
packet is sent or received

Table 38: Processor usage latency when connected

From the table we can calculate a typical processing time for a central connection event where one packet
is sent and received to be:

tisr(0),RadioPrepare T tisr(0),RadioStart T LisR(0),RadioProcessing T LisR(0), PostProcessing T 2 * tisp4) = 250 s

This means typically more than 99% of the processor time is available to the application when one
peripheral link is established and one packet is sent in each direction with a 100 ms connection interval.

16.3.4 Interrupt latency when using multiple modules and roles

Concurrent use of the Flash API, Radio Timeslot API, QoS channel survey, and/or one or more Bluetooth
Low Energy roles can affect interrupt latency.

The same interrupt priority levels are used by all Flash API, Radio Timeslot API, and Bluetooth Low Energy
roles. When using more than one of these concurrently, their respective events can be scheduled back-to-
back (see Scheduling on page 70 for more on scheduling). In those cases, the last interrupt in the activity
by one module/role can be directly followed by the first interrupt of the next activity. Therefore, to find
the real worst-case interrupt latency in these cases, the application developer must add the latency of the
first and last interrupt for all combinations of roles that are used.

For example, if the application uses the Radio Timeslot APl while having a Bluetooth Low Energy advertiser
running, the worst-case interrupt latency or interruption for an application interrupt is the largest of the
following SoftDevice interrupts having higher priority level (lower numerical value) than the application
interrupt:

¢ the worst-case interrupt latency of the Radio Timeslot API
¢ the worst-case interrupt latency of the Bluetooth Low Energy advertiser role

¢ the sum of the max time of the first interrupt of the Radio Timeslot APl and the last interrupt of the
Bluetooth Low Energy advertiser role

¢ the sum of the max time of the first interrupt of the Bluetooth Low Energy advertiser role and the last
interrupt of the Radio Timeslot API

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 95



17

Bluetooth Low Energy data
throughput

This chapter outlines achievable Bluetooth Low Energy connection throughput for GATT procedures used
to send and receive data in stated SoftDevice configurations.

The throughput numbers listed in this chapter are based on measurements in an interference-free radio
environment. Maximum throughput is only achievable if the application, without delay, reads data packets
as they are received and provides new data as packets are transmitted. The connection event length
should be set to such a value that the entire connection event can be filled with packets. The SoftDevice
may transfer as many packets as can fit within the connection event as specified by the event length for
the connection. For example, in simplex communication, where data is transmitted in only one direction,
more time will be available for sending packets. Therefore, there may be extra TX-RX packet pairs in
connection events. Additionally, more time can be made available for a connection by extending the
connection events beyond their reserved time. See Connection timing with Connection Event Length
Extension on page 79 for more information.

The maximum data throughput numbers given in this chapter represent the maximum amount of data
that can be transferred between two applications in a given time. The maximum throughput depends on
the mechanism used to transfer data. When the application utilizes ATT Handle Value Notification or ATT
Write Command, the transactions are one direction only. When the application utilizes ATT Write Request,
it is assumed that the peer responds with an ATT Write Response in the next connection interval. The
throughput will in this case be limited to one packet every second connection interval. The amount of
data in each packet is the MTU size subtracted by the ATT header size. Therefore, the throughput can be
expressed as follows:

Throughput_bps = num_packets * (ATT_MTU - 3) * 8 / seconds

All data throughput values apply to packet transfers over an encrypted connection using maximum
payload sizes. Maximum LL payload size is 27 bytes unless noted otherwise.

The following table shows maximum data throughput at a connection interval of 7.5 ms for a single
peripheral or central connection.

Protocol ATT MTU  Event Method Maximum data  Maximum data
size length throughput (LE  throughput (LE
1M PHY) 2M PHY)
GATT Client 23 7.5ms Receive Notification 192.0 kbps 256.0 kbps
Send Write command 192.0 kbps 256.0 kbps
Send Write request 10.6 kbps 10.6 kbps
Simultaneous receive 128.0 kbps (each | 213.3 kbps (each
Notification and send direction) direction)
Write command
GATT Server 23 7.5ms Send Notification 192.0 kbps 256.0 kbps
Receive Write 192.0 kbps 256.0 kbps
command
Receive Write request | 10.6 kbps 10.6 kbps

4383 110v7.0

96

N

NORDIC"

SEMICONDUCTOR




Bluetooth Low Energy data throughput

Protocol ATT MTU  Event Method Maximum data  Maximum data
size length throughput (LE  throughput (LE
1M PHY) 2M PHY)
Simultaneous send 128.0 kbps (each | 213.3 kbps (each
Notification and receive | direction) direction)
Write command
GATT Server 158 7.5ms Send Notification 248.0 kbps 330.6 kbps
Receive Write 248.0 kbps 330.6 kbps
command
Receive Write request | 82.6 kbps 82.6 kbps
Simultaneous send 165.3 kbps (each | 275.5 kbps (each
Notification and receive | direction) direction)
Write command
GATT Client 23 3.75ms Receive Notification 64.0 kbps 106.6 kbps
Send Write command 64.0 kbps 106.6 kbps
Send Write request 10.6 kbps 10.6 kbps
Simultaneous receive 64.0 kbps (each | 85.3 kbps (each
Notification and send direction) direction)
Write command
GATT Server 23 3.75ms Send Notification 64.0 kbps 106.6 kbps
Receive Write 64.0 kbps 106.6 kbps
command
Receive Write request | 10.6 kbps 10.6 kbps
Simultaneous send 64.0 kbps (each | 85.3 kbps (each
Notification and receive | direction) direction)
Write command
GATT Client 23 2.5ms Receive Notification 42.6 kbps 64.0 kbps
Send Write command 42.6 kbps 64.0 kbps
Send Write request 10.6 kbps 10.6 kbps
Simultaneous receive 21.3 kbps (each | 42.6 kbps (each
Notification and send direction) direction)
Write command
GATT Server 23 2.5ms Send Notification 42.6 kbps 64.0 kbps
Receive Write 42.6 kbps 64.0 kbps
command
Receive Write request | 10.6 kbps 10.6 kbps

Simultaneous send
Notification and receive
Write command

21.3 kbps (each
direction)

42.6 kbps (each
direction)

4383 110v7.0

Table 39: Data throughput for a single connection with 23 byte ATT MTU

97

N

NORDIC"

SEMICONDUCTOR




Bluetooth Low Energy data throughput

The following table shows the maximum data throughput for a single peripheral or central connection.
The event length is equal to the connection interval.

Protocol ATTMTU LL Connection Method Maximum Maximum
size payload interval data data
sizell throughput  throughput
(LE 1M PHY) (LE 2M PHY)
GATT 247 251 50 ms Send Notification 702.8 kbps | 1327.5 kbps
S
erver Receive Write command | 702.8 kbps | 1327.5 kbps
Simultaneous send 390.4 780.8
Notification and receive | kbps (each | kbps (each
Write command direction) direction)
GATT 247 251 400 ms Send Notification 771.1 kbps | 1376.2 kbps
server Receive Write command | 760.9 kbps | 1376.2 kbps
Simultaneous send 424.6 (each | 800.4
Notification and receive | direction) kbps (each
Write command direction)
Raw LL N/A 251 400 ms N/A 803 kbps 1447.2 kbps
data

Table 40: Data throughput for a single connection with 247 byte ATT MTU

A connection interval of 20 ms and an event length of 2.5 ms allows up to eight connections. The
maximum throughput per connection for this case, using 23 byte ATT MTU, is shown in Table 41: Data
throughput for up to 8 connections on page 99.

For connections with longer event length, a longer connection interval would need to be used for
each connection to prevent connection events from overlapping. See Scheduling on page 70 for more

information on how connections can be configured.

Throughput may be reduced if a peripheral link is running because peripheral links are not synchronized
with central links. If a peripheral link is running, throughput may decrease to half for up to two central
links and the peripheral link.

1 Assumming that the peer device accepts the increased ATT and LL payload sizes.

4383 110v7.0

98

N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy data throughput

GATT Client 2.5ms Receive Notification 16.0 kbps
Send Write command 16.0 kbps
Send Write request 4.0 kbps
Simultaneous receive 8.0 kbps (each direction)
Notification and send Write
command
GATT Server 2.5ms Send Notification 16.0 kbps
Receive Write command 16.0 kbps
Receive Write request 4.0 kbps

Simultaneous send Notification
and receive Write command

8.0 kbps (each direction)

4383_110v7.0

Table 41: Data throughput for up to 8 connections

99

NORDIC

SEMICONDUCTOR



18 Bluetooth Low Energy power profiles

The power profile diagrams in this chapter give an overview of the stages within a Bluetooth Low Energy
Radio Event implemented by the SoftDevice. The profiles illustrate battery current versus time and briefly
describe the stages that could be observed.

The profiles are based on typical events with empty packets. The Standby is a state of the SoftDevice
where all Peripherals are IDLE.

The time the radio spends to transmit or receive a packet depends on the PHY. Using a higher data rate
will decrease the radio time, while using a lower data rate will increase the radio time. Therefore, a higher
data rate decreases power consumption, while a lower data rate increases power consumption.

Note: A higher data rate increases throughput but reduces the link budget and therefore the
maximum range. A lower data rate decreases throughput but increases the link budget.

18.1 Advertising event

This section gives an overview of the power profile of the advertising event implemented in the
SoftDevice. Figure 59: Advertising event on page 100 shows the event current profile of an advertising
event consisting of three advertising packets sent on the primary advertising channels. If the SoftDevice
is configured to use extended advertising, the SoftDevice will in addition transmit one or more auxiliary
advertising packets on a secondary advertising channel. For each auxiliary packet, the current profile of
stage D, E, F and H in Figure 59: Advertising event on page 100 is added to the event current profile.

CPU ——— Radio
Total

Advertising Event Current Profile

o). G0y, € (G, ) (0

A I I I O
el el ]| e
| — | — | —
Current T 1 11 11
- J Ld - J LJd - J LJd
(A) [ |(H) | |(H) (H)
H H i
| |
(B) L L I
11 [N |
. (© R R 0
0 Time
Figure 59: Advertising event
4383_110v7.0 100 <

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy power profiles

(A) Pre-processing (CPU)
(B) Standby + HFXO ramp
(€) Standby

(D) Radio startup

(E) Radio TX

(F) Radio switch

(G) Radio RX

(H) Post-processing (CPU)
(1) Standby

Table 42: Advertising event

18.2 Peripheral connection event

This section gives an overview of the power profile of the peripheral connection event implemented in the
SoftDevice.

. . ——— CPU  ——— Radi
Peripheral Event Current Profile el
(E) (G)
(D) —F)—
Current | :_\_l
o
[ L |(H)
) N
)
ST
ol L () oL ()
0 Time
Figure 60: Peripheral connection event
4383_110v7.0 101 N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy power profiles

Stage Description

(A) Pre-processing (CPU)
(B) Standby + HFXO ramp
(€) Standby

(D) Radio startup

(E) Radio RX

(F) Radio switch

(G) Radio TX

(H) Post-processing (CPU)
(n Standby

Table 43: Peripheral connection event

18.3 Scanning event

This section gives an overview of the power profile of the scanning event implemented in the SoftDevice.
Figure 61: Scanning event on page 102 shows the current profile for a scan event. When the SoftDevice
receives a packet, it transitions from stage E to stage F. For each advertising packet the SoftDevice
receives, the sequence D-F is added to the current profile. For each secondary channel advertising packet
the scanner receives, the sequence A-F is added to the current profile.

. . CPU ——— Radio
Scanning Event Current Profile Total
(E)
(DY
(o)
r——————————— e
l
Current L
||
(A) (F)
(B)
C G
P o {0 (G)
0 Time
Figure 61: Scanning event
4383_110v7.0 102 N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy power profiles

(A) Pre-processing (CPU)

(B) Standby IDLE + HFXO ramp
(€) Standby

(D) Radio startup

(E) Radio RX

(F) Post-processing (CPU)

(G) Standby

Table 44: Scanning event

18.4 Central connection event

This section gives an overview of the power profile of the central connection event implemented in the
SoftDevice.

. ——-— CPU ——— Radio
Central Event Current Profile Totsl
(E) (G)
— |
e - "II—
Current : !_l :
| II_ |
J e
(A) (H)
oL (© i ()
0 Time
Figure 62: Central connection event
4383_110v7.0 103 N

NORDIC"

SEMICONDUCTOR



Bluetooth Low Energy power profiles

(A) Pre-processing (CPU)
(B) Standby + HFXO ramp
Q) Standby

(D) Radio startup

(E) Radio TX

(F) Radio switch

(G) Radio RX

(H) Post-processing (CPU)
)] Standby

Table 45: Central connection event

4383_110v7.0 104 .

NORDIC

SEMICONDUCTOR



19

SoftDevice identification and revision

scheme

The SoftDevices are identified by the SoftDevice part code, a qualified IC partcode (for example,

nRF52832), and a version string.

The identification scheme for SoftDevices consists of the following items:

¢ For revisions of the SoftDevice which are production qualified, the version string consists of major,
minor, and revision numbers only, as described in the table below.

e For revisions of the SoftDevice which are not production qualified, a build number and a test
qualification level (alpha/beta) are appended to the version string.

e For example: s110_nrf51_1.2.3-4.alpha, where the major version is 1, minor version is 2, revision
number is 3, build number is 4, and test qualification level is alpha. For more examples, see Table 47:
SoftDevice revision examples on page 105.

Revision

Major increments

Description

Modifications to the AP/ or the function or behavior of the
implementation or part of it have changed.

Changes as per minor increment may have been made.

Application code will not be compatible without some
modification.

Minor increments

Additional features and/or AP/ calls are available.
Changes as per minor increment may have been made.

Application code may have to be modified to take advantage of
new features.

Revision increments

Issues have been resolved or improvements to performance
implemented.

Existing application code will not require any modification.

Build number increment (if present)

New build of non-production versions.

Table 46: Revision scheme

Sequence number

s110_nrf51_1.2.3-1.alpha

Description

Revision 1.2.3, first build, qualified at alpha level

s110_nrf51_1.2.3-2.alpha

Revision 1.2.3, second build, qualified at alpha level

s110_nrf51_1.2.3-5.beta

Revision 1.2.3, fifth build, qualified at beta level

s110_nrf51_1.2.3

Revision 1.2.3, qualified at production level

Table 47: SoftDevice revision examples

4383_110v7.0

N

NORDIC"

SEMICONDUCTOR

105




SoftDevice identification and revision scheme

Qualification Description

Alpha ¢ Development release suitable for prototype application development
e Hardware integration testing is not complete

¢ Known issues may not be fixed between alpha releases

¢ Incomplete and subject to change

Beta ¢ Development release suitable for application development
¢ In addition to alpha qualification:

¢ Hardware integration testing is complete
¢ Stable, but may not be feature complete and may contain known issues

¢ Protocol implementations are tested for conformance and
interoperability

Production » Qualified release suitable for production integration
¢ In addition to beta qualification:

e Hardware integration tested over supported range of operating
conditions

e Stable and complete with no known issues
e Protocol implementations conform to standards

Table 48: Test qualification levels

19.1 Master boot record distribution and revision
scheme

The MBR is distributed in each SoftDevice hex file.

The version of the MBR distributed with the SoftDevice will be published in the release notes for the
SoftDevice and uses the same major, minor, and revision-numbering scheme as described here.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 106



Glossary

Application Programming Interface (API)

A language and message format used by an application program to communicate with an operating
system, application, or other service.

Attribute Protocol (ATT)

“The attribute protocol allows a device referred to as the server to expose a set of attributes and
their associated values to a peer device referred to as the client.” Bluetooth Core Specification,
Version 5.0, Vol 3, Part F, Section 1.1

Cortex Microcontroller Software Interface Standard (CMSIS)

A vendor-independent hardware abstraction layer for the Cortex-M processor series that defines
generic tool interfaces.

Device Firmware Update (DFU)

A mechanism for upgrading the firmware of a device.

Floating-Point Unit (FPU)

A part of a CPU specially designed to perform operations on floating point numbers.

Generic Access Profile (GAP)

“The Bluetooth system defines a base profile which all Bluetooth devices implement. This profile
is the Generic Access Profile (GAP), which defines the basic requirements of a Bluetooth device.”
Bluetooth Core Specification, Version 5.0, Vol 1, Part A, Section 6.2

Generic Attribute Protocol (GATT)

“Generic Attribute Profile (GATT) is built on top of the Attribute Protocol (ATT) and establishes
common operations and a framework for the data transported and stored by the Attribute Protocol.”
Bluetooth Core Specification, Version 5.0, Vol 1, Part A, Section 6.4

Human Interface Device (HID)

Type of a computer device that interacts directly with, and most often takes input from, humans and
may deliver output to humans. The term "HID" most commonly refers to the USB-HID specification.

Integrated Circuit (IC)
A semiconductor chip consisting of fabricated transistors, resistors, and capacitors.

Link Layer (LL)

“A control protocol for the link and physical layers that is carried over logical links in addition to user
data.” Bluetooth Core Specification, Version 5.0, Vol 1, Part A, Section 1.2

Low-Noise Amplifier (LNA)

In a radio receiving system, an electronic amplifier that amplifies a very low-power signal without
significantly degrading its signal-to-noise ratio.

Logical Link Control and Adaptation Protocol (L2CAP)

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 107


https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

“Provides a channel-based abstraction to applications and services. It carries out segmentation and
reassembly of application data and multiplexing and de-multiplexing of multiple channels over a
shared logical link.” Bluetooth Core Specification, Version 5.0, Vol 1, Part A, Section 1.2

Main Stack Pointer (MSP)

The default stack pointer. By default, the nRF52 has a shared call stack for the application and the
SoftDevice, managed by the MSP.

Man-in-the-Middle (MITM)

A man-in-the-middle attack is a form of eavesdropping where communication between two devices
is monitored and modified by an unauthorized party who relays information between the two
devices giving the illusion that they are directly connected.

Memory Watch Unit (MWU)
A peripheral that can be used to generate events when a memory region is accessed by the CPU.

Power Amplifier (PA)

A device used to increase the transmit power level of a radio signal.

Programmable Peripheral Interconnect (PPI)

Enables peripherals to interact autonomously with each other using tasks and events independent of
the CPU.

Process Stack Pointer (PSP)

A separate stack pointer that can be used for application threads. This is an optional configuration,
but it may be required if using an RTOS.

Qualified Design Identification (QDID)

A unique identifier assigned to a design that has completed Bluetooth Qualification.

Quality of Service (QoS)

A module in the SoftDevice that is dedicated to providing various signal quality measurements. The
application can use this data to estimate the quality of received signal.

Software Development Kit (SDK)

A set of tools used for developing applications for a specific device or operating system.

SoftDevice Manager (SDM)

A SoftDevice component that controls the SoftDevice state and configures the behavior of certain
core functionality.

Security Manager (SM)

Provides means for bonding devices, encrypting and decrypting data, and enabling device privacy.

Security Manager Protocol (SMP)

A protocol used for pairing and key distribution.

System on Chip (SoC)

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 108


https://www.bluetooth.com/specifications/bluetooth-core-specification

A microchip that integrates all the necessary electronic circuits and components of a computer or
other electronic systems on a single integrated circuit.

Supervisor Call (SVC)

Generates a software exception in which access to system resources or privileged operations can be
provided.

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 109



Acronyms and abbreviations

These acronyms and abbreviations are used in this document.

API
Application Programming Interface

ATT
Attribute Protocol

CMSIS
Cortex Microcontroller Software Interface Standard

DFU
Device Firmware Update

FPU
Floating-Point Unit

GAP
Generic Access Profile

GATT
Generic Attribute Protocol

GPIO
General-Purpose Input/Output

GPIOTE
General-Purpose Input/Output Tasks and Events

HFCLK
High-Frequency Clock

HFXO
High-Frequency Crystal Oscillator

HID
Human Interface Device

IC
Integrated Circuit

IRQ
Interrupt Request

LFCLK
Low-Frequency Clock

LL
Link Layer

LNA
Low-Noise Amplifier

4383 110v7.0 110

N

NORDIC"

SEMICONDUCTOR



Acronyms and abbreviations

L2CAP
Logical Link Control and Adaptation Protocol

MBR
Master Boot Record

MITM
Man-in-the-Middle

MSP
Main Stack Pointer

MTU
Maximum Transmission Unit

MWU
Memory Watch Unit

NVIC
Nested Vectored Interrupt Controller

PA
Power Amplifier

PDU
Packet Data Unit

PPI
Programmable Peripheral Interconnect

PSP
Process Stack Pointer

QpID
Qualified Design Identification

QoS
Quality of Service

RC
Resistor-Capacitor

SDK
Software Development Kit

SDM
SoftDevice Manager

SM
Security Manager

SMP
Security Manager Protocol

SoC
System on Chip

4383 110v7.0 111

N

NORDIC"

SEMICONDUCTOR



Acronyms and abbreviations

svc
Supervisor Call

uuib
Universally Unique Identifier

~

NORDIC"

SEMICONDUCTOR

4383 110v7.0 112



Legal notices

By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may
change these terms and conditions at any time without notice.

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and shall have no liability for the consequences of use
of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor’s
documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to
this document without notice.

Life support applications

Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from
such improper use or sale.

RoHS and REACH statement

Nordic Semiconductor products meet the requirements of Directive 2011/65/EU of the European
Parliament and of the Council on the Restriction of Hazardous Substances (RoHS 2) and the requirements
of the REACH regulation (EC 1907/2006) on Registration, Evaluation, Authorization and Restriction of
Chemicals.

The SVHC (Substances of Very High Concern) candidate list is continually being updated. Complete
hazardous substance reports, material composition reports and latest version of Nordic's REACH
statement can be found on our website www.nordicsemi.com.

Trademarks

All trademarks, service marks, trade names, product names, and logos appearing in this documentation
are the property of their respective owners.

Copyright notice

© 2019 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited
without the prior written permission of the copyright holder.

COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
=1S0 9001 =

N

NORDIC"

SEMICONDUCTOR

4383 110v7.0 113


https://www.nordicsemi.com

	Contents
	Revision history
	S132 SoftDevice
	Documentation
	Product overview
	Application programming interface
	4.1 Events - SoftDevice to application
	4.2 Error handling

	SoftDevice Manager
	5.1 SoftDevice enable and disable
	5.2 Clock source
	5.3 Power management
	5.4 Memory isolation and runtime protection

	System on Chip library
	System on Chip resource requirements
	7.1 Hardware peripherals
	7.2 Application signals – software interrupts
	7.3 Programmable peripheral interconnect
	7.4 SVC number ranges
	7.5 Peripheral runtime protection
	7.6 External and miscellaneous requirements

	Flash memory API
	Multiprotocol support
	9.1 Non-concurrent multiprotocol implementation
	9.2 Concurrent multiprotocol implementation using the Radio Timeslot API
	9.2.1 Request types
	9.2.2 Request priorities
	9.2.3 Timeslot length
	9.2.4 Scheduling
	9.2.5 High-frequency clock configuration
	9.2.6 Performance considerations
	9.2.7 Radio Timeslot API
	9.2.7.1 API calls
	9.2.7.2 Radio Timeslot events
	9.2.7.3 Radio Timeslot signals
	9.2.7.4 Signal handler return actions
	9.2.7.5 Ending a timeslot in time
	9.2.7.6 Signal handler considerations


	9.3 Radio Timeslot API usage scenarios
	9.3.1 Complete session example
	9.3.2 Blocked timeslot scenario
	9.3.3 Canceled timeslot scenario
	9.3.4 Radio Timeslot extension example


	Bluetooth Low Energy protocol stack
	10.1 Profile and service support
	10.2 Bluetooth Low Energy features
	10.3 Limitations on procedure concurrency
	10.4 Bluetooth Low Energy role configuration

	Radio Notification
	11.1 Radio Notification signals
	11.2 Radio Notification on connection events as a Central
	11.3 Radio Notification on connection events as a Peripheral
	11.4 Radio Notification with concurrent peripheral and central connection events
	11.5 Radio Notification with Connection Event Length Extension
	11.6 Power amplifier and low noise amplifier control configuration

	Master boot record and bootloader
	12.1 Master boot record
	12.2 Bootloader
	12.3 Master boot record and SoftDevice reset procedure
	12.4 Master boot record and SoftDevice initialization procedure

	SoftDevice information structure
	SoftDevice memory usage
	14.1 Memory resource map and usage
	14.1.1 Memory resource requirements

	14.2 Attribute table size
	14.3 Role configuration
	14.4 Security configuration
	14.5 Vendor specific UUID counts

	Scheduling
	15.1 SoftDevice timing-activities and priorities
	15.2 Initiator timing
	15.3 Connection timing as a Central
	15.4 Scanner timing
	15.4.1 Primary channel scanner timing
	15.4.2 Secondary channel scanner timing

	15.5 Advertiser timing
	15.6 Peripheral connection setup and connection timing
	15.7 Connection timing with Connection Event Length Extension
	15.8 Flash API timing
	15.9 Timeslot API timing
	15.10 Suggested intervals and windows

	Interrupt model and processor availability
	16.1 Exception model
	16.1.1 Interrupt forwarding to the application
	16.1.2 Interrupt latency due to System on Chip framework

	16.2 Interrupt priority levels
	16.3 Processor usage patterns and availability
	16.3.1 Flash API processor usage patterns
	16.3.2 Radio Timeslot API processor usage patterns
	16.3.3 Bluetooth Low Energy processor usage patterns
	16.3.3.1 Bluetooth Low Energy Advertiser (Broadcaster) processor usage
	16.3.3.2 Bluetooth Low Energy peripheral connection processor usage
	16.3.3.3 Bluetooth Low Energy scanner and initiator processor usage
	16.3.3.4 Bluetooth Low Energy central connection processor usage

	16.3.4 Interrupt latency when using multiple modules and roles


	Bluetooth Low Energy data throughput
	Bluetooth Low Energy power profiles
	18.1 Advertising event
	18.2 Peripheral connection event
	18.3 Scanning event
	18.4 Central connection event

	SoftDevice identification and revision scheme
	19.1 Master boot record distribution and revision scheme

	Glossary
	Application Programming Interface (API)
	Attribute Protocol (ATT)
	Cortex Microcontroller Software Interface Standard (CMSIS)
	Device Firmware Update (DFU)
	Floating-Point Unit (FPU)
	Generic Access Profile (GAP)
	Generic Attribute Protocol (GATT)
	Human Interface Device (HID)
	Integrated Circuit (IC)
	Link Layer (LL)
	Low-Noise Amplifier (LNA)
	Logical Link Control and Adaptation Protocol (L2CAP)
	Main Stack Pointer (MSP)
	Man-in-the-Middle (MITM)
	Memory Watch Unit (MWU)
	Power Amplifier (PA)
	Programmable Peripheral Interconnect (PPI)
	Process Stack Pointer (PSP)
	Qualified Design Identification (QDID)
	Quality of Service (QoS)
	Software Development Kit (SDK)
	SoftDevice Manager (SDM)
	Security Manager (SM)
	Security Manager Protocol (SMP)
	System on Chip (SoC)
	Supervisor Call (SVC)

	Acronyms and abbreviations
	Legal notices

