
Copyright © 2014 Nordic Semiconductor ASA. All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

S110 nRF51822
Bluetooth® low energy Peripheral SoftDevice

SoftDevice Specification v1.3

Key Features

• Bluetooth® 4.1 compliant low energy single-mode protocol
stack

• Link layer
• L2CAP, ATT, and SM protocols
• GATT, GAP, and L2CAP
• Concurrent Peripheral and Broadcaster roles
• GATT Client and Server
• Full SMP support including MITM and OOB pairing

• Complementary nRF51 SDK including Bluetooth profiles and
example applications

• Master Boot Record for over-the-air device firmware update
• Memory isolation between application and protocol stack for

robustness and security
• Thread-safe supervisor-call based API
• Asynchronous, event-driven behavior
• No RTOS dependency

• Any RTOS can be used
• No link-time dependencies

• Standard ARM® Cortex™-M0 project configuration for
application development

• Support for multiprotocol operation concurrent with
Bluetooth low energy connections and non-concurrently

• Concurrent multiprotocol timeslot API
• Alternate protocol stack running in application space

Applications

• Computer peripherals and I/O devices
• Mouse
• Keyboard
• Multi-touch trackpad

• Interactive entertainment devices
• Remote control
• 3D glasses
• Gaming controller

• Personal Area Networks
• Health and fitness sensor and monitor

devices
• Medical devices
• Key fobs and wrist watches

• Remote control toys
• Home automation

S110 nRF51822 SoftDevice Specification v1.3

Page 2

Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications
Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details
For your nearest distributor, please visit http://www.nordicsemi.com.
Information regarding product updates, downloads, and technical support can be accessed through your
My Page account on our homepage.

Main office:

Phone: +47 72 89 89 00
Fax: +47 72 89 89 89

Otto Nielsens veg 12
7052 Trondheim
Norway

Mailing address: Nordic Semiconductor
P.O. Box 2336
7004 Trondheim
Norway

http://www.nordicsemi.no

S110 nRF51822 SoftDevice Specification v1.3
Document Status

Revision History

Status Description

v0.5 This specification contains target specifications for product development.

v0.7 This specification contains preliminary data; supplementary data may be published from Nordic
Semiconductor ASA later.

v1.0 This specification contains final product specifications. Nordic Semiconductor ASA reserves the right
to make changes at any time without notice in order to improve design and supply the best possible
product.

Date Version Description

June 2014 1.3 Updated for S110 SoftDevice v7.0.0.
Added:

• Chapter 10.6 “External requirements” on page 35

Updated:
• Key Features on front page
• Section 1.1 “Documentation” on page 5
• Section 2.2 “Multiprotocol support” on page 6
• Section 3.1 “Profile and service support” on page 8
• Section 3.2 “Bluetooth low energy features” on page 9
• Chapter 4 “SoC library” on page 12
• Chapter 5 “SoftDevice Manager” on page 13
• Chapter 6 “Flash memory API” on page 14
• Section 8.6 “Multiprotocol timeslot API” on page 21
• Section 9.1 “Master Boot Record (MBR)” on page 30
• Section 10.1 “Memory resource map and usage” on page 31

April 2014 1.3A Updated for S110 SoftDevice v7.0.0. alpha
Added:

• Chapter 8 “Concurrent Multiprotocol Timeslot API” on page 19
• Section 9.1 “Master Boot Record (MBR)” on page 30

Updated:
• Key Features on front page
• Section 2.2 “Multiprotocol support” on page 6
• Table 3 “GAP features in the BLE stack” on page 9
• Table 9 “Proprietary features in the BLE stack” on page 11
• Table 27 “Additional latency due to SoftDevice processing” on

page 36
• 11.4 “Performance with Flash memory API and Concurrent

Multiprotocol Timeslot API” on page 40

November 2013 1.2 Updated for S110 v6.0.0 release.
Added Chapter 6 “Flash memory API” on page 14;
Added Chapter 9 “Bootloader” on page 29
Updated Table 1 on page 8;
Updated Table 4 on page 10;
Updated Table 10 on page 12;
Updated Chapter 7 “Radio Notification” on page 15;
Updated Table 17 on page 19.
Page 3

S110 nRF51822 SoftDevice Specification v1.3
March 2013 1.1 Updated for changes made as of S110 v5.0.0;
Changed Section 9.2 “Processor availability” on page 37 and Section
13 “BLE power profiles” on page 42;
Changed Table 27 on page 37;
Added Table 28 on page 38;
Changed Table 30 on page 40;
Changed Figure 16 on page 43 and Figure 17 on page 44.

February 2013 1.0 Changed Memory resource requirements in Table 16 on page 19;
Added Section 9.3 “Application signals - software interrupts” on
page 21;
Updated Chapter 9 “BLE performance” on page 36 and added Section
9.3 “Data throughput” on page 40;
Updated diagrams in Chapter 13 “BLE power profiles” on page 42;
Added Chapter 14 “SoftDevice identification and revision scheme” on
page 45;
Updated Chapter 14.1 “Notification of SoftDevice revision updates” on
page 46.

September 2012 0.6 First release.

Date Version Description
Page 4

S110 nRF51822 SoftDevice Specification v1.3

Page 5

1 Introduction
The S110 SoftDevice is a Bluetooth® low energy (BLE) Peripheral protocol stack solution. It integrates a low
energy controller and host, and provides a full and flexible application programming interface (API) for
building Bluetooth low energy System on Chip (SoC) solutions.

This document contains information about the SoftDevice features and performance.

Note: The SoftDevice features and performance are subject to change between revisions of this
document. See Section 14.1 “Notification of SoftDevice revision updates” on page 46 for more
information. To find information on any limitations or omissions, please refer to the SoftDevice
release notes, which contain a detailed summary of the release status.

1.1 Documentation
Below is a list of the core documentation for the SoftDevice.

Document Description

nRF51 Series
Reference Manual

“Appendix A: SoftDevice architecture” in the nRF51 Series Reference Manual is essential reading
for understanding the resource usage and performance related chapters of this document.

nRF51822 Product
Specification (PS)

Contains a description of the hardware, modules, and electrical specifications specific to the
nRF51822 chip.

nRF51822 Product
Anomaly Notification (PAN)

Contains information on anomalies related to the nRF51822 chip.

Bluetooth Core
Specification

The Bluetooth Core Specification version 4.1, Volumes 1, 3, 4, and 6 describes Bluetooth
terminology which is used throughout the SoftDevice Specification.

https://www.bluetooth.org/en-us/specification/adopted-specifications

S110 nRF51822 SoftDevice Specification v1.3

Page 6

2 Product overview
This section provides an overview of the SoftDevice.

2.1 SoftDevice
The SoftDevice is a precompiled and linked binary software that integrates a Bluetooth 4.1 low energy
protocol stack on the nRF51x22 chip.

The Application Programming Interface (API) is a standard C language set of functions and data types that
give the application complete compiler and linker independence from the SoftDevice implementation.

The SoftDevice enables the application programmer to develop their code as a standard ARM® Cortex™-M0
project without needing to integrate with proprietary chip-vendor software frameworks. This means that
any ARM® Cortex™-M0 compatible toolchain can be used to develop Bluetooth low energy applications with
the SoftDevice.

 Figure 1 System on Chip application with the SoftDevice

The SoftDevice can be programmed onto compatible nRF51 Series chips during both development and
production. This specification outlines the supported features of a production level SoftDevice. Alpha and
beta versions may not support all features.

2.2 Multiprotocol support
The SoftDevice supports both non-concurrent and fully concurrent multiprotocol implementations.
For non-concurrent operation, a proprietary 2.4 GHz protocol can be implemented in the application
program area and can access all hardware resources when the SoftDevice is disabled. For concurrent
multiprotocol operation, with a proprietary protocol running concurrently with the SoftDevice protocol, see
Chapter 8 “Concurrent Multiprotocol Timeslot API” on page 19.

 CMSIS

 nRF API

Application – Profiles and Services

App-Specific
peripheral

drivers

 nRF51 HW

nRF SoftDevice

Protocol Stack

SoftDevice
Manager

SoC Library

| Protocol API (SV Calls)

S110 nRF51822 SoftDevice Specification v1.3
3 Bluetooth low energy protocol stack
The Bluetooth 4.1 compliant low energy Host and Controller embedded in the SoftDevice are fully qualified
with multi-role support (Peripheral and Broadcaster). The API is defined above the Generic Attribute
Protocol (GATT), Generic Access Profile (GAP), and Logical Link Control and Adaptation Protocol (L2CAP).
The SoftDevice allows applications to implement standard Bluetooth low energy profiles as well as
proprietary use case implementations.

The nRF51 Software Development Kit (SDK) complements the BLE protocol stack with Service and Profile
implementations. Single-mode System on Chip (SoC) applications are enabled by the full BLE protocol stack
and nRF51xxx integrated circuit (IC).

 Figure 2 SoftDevice stack architecture

nRF51xxx SoC

SoftDevice

Host

Controller

Physical Layer (PHY)

Generic Attribute
Profile (GATT)

Attribute
Protocol (ATT)

Logical Link Control and Adaptation Layer
Protocol (L2CAP)

Link Layer (LL)

Security Manager
(SM)

Generic Access Profile
(GAP)

Application
Profiles and Services
Page 7

S110 nRF51822 SoftDevice Specification v1.3
3.1 Profile and service support
The Profiles and corresponding Services supported by the SoftDevice are shown in Table 1.

 Table 1 Supported profiles and services

Note: Examples for selected profiles and services are available in the nRF51 SDK. See the SDK
documentation for details.

Adopted Profile Adopted Services

HID over GATT
HID
Battery
Device Information

Heart Rate
Heart Rate
Device Information

Proximity
Link Loss
Immediate Alert
TX Power

Blood Pressure Blood pressure

Health Thermometer Health Thermometer

Glucose Glucose

Phone Alert Status Phone Alert Status

Alert Notification Alert Notification

Time
Current Time
Next DST Change
Reference Time Update

Find Me Immediate Alert

Cycling speed and cadence
Cycling speed and cadence
Device information

Running speed and cadence
Running speed and cadence
Device information

Location and Navigation Location and Navigation

Cycling Power Cycling Power

Scan Parameters Scan Parameters

User Data Service
Page 8

S110 nRF51822 SoftDevice Specification v1.3
3.2 Bluetooth low energy features
The BLE protocol stack in the SoftDevice has been designed to provide an abstract but flexible interface for
application development for Bluetooth low energy devices. GAP, GATT, SM, and L2CAP are implemented in
the SoftDevice and managed through the API. The SoftDevice implements GAP and GATT procedures and
modes that are common to most profiles, such as the handling of discovery, connection, pairing, and
bonding.

The BLE API is consistent across Bluetooth role implementations where common features have the same
interface. The following tables describe the features found in the BLE protocol stack.

 Table 2 API features in the BLE stack

 Table 3 GAP features in the BLE stack

API Features Description

Interface to:
GATT/GAP/L2CAP

Consistency between APIs including shared data formats.

Attribute Table population and access Full flexibility to populate the Attribute Table at runtime, attribute removal is
not supported.

Asynchronous and event driven Thread-safe function and event model enforced by the architecture.

Vendor-specific (128 bit) UUIDs for
proprietary profiles

Compact, fast, and memory efficient management of 128 bit UUIDs.

Packet flow control Full application control over data buffers to ensure maximum throughput.

GAP features Description

Multi-role:
Peripheral and Broadcaster

Broadcaster can run concurrently with a peripheral in a connection.

Multiple bond support Keys and peer information stored in application space.
No restrictions in stack implementation.

Security mode 1:
Levels 1, 2, and 3

Support for all levels of SM 1.

User-defined Advertising data Full control over advertising and scan response data for the application.
Page 9

S110 nRF51822 SoftDevice Specification v1.3
 Table 4 GATT features in the BLE stack

 Table 5 Security Manager (SM) features in the BLE stack

 Table 6 Attribute Protocol (ATT) features in the BLE stack

GATT Features Description

Full GATT Server Including Service Changed Support

Support for authorization: Enables control points
Enables freshest data
Enables GAP authorization

Full GATT Client Flexible data management options for packet transmission with either fine
control or abstract management

Implemented GATT
Sub-procedures

Discover all Primary Services
Discover Primary Service by Service UUID
Find included Services
Discover All Characteristics of a Service
Discover Characteristics by UUID
Discover All Characteristic Descriptors
Read Characteristic Value
Read using Characteristic UUID
Read Long Characteristic Values
Write Without Response
Write Characteristic Value
Notifications
Indications
Read Characteristic Descriptors
Read Long Characteristic Descriptors
Write Characteristic Descriptors
Write Long Characteristic Values
Write Long Characteristic Descriptors
Reliable Writes

Security Manager Features Description

Lightweight key storage for reduced
NV memory requirements

Efficient usage of key generation algorithms to minimize memory
overheads.

Authenticated MITM (Man in the
middle) protection

Protects the bonding procedure against malicious attackers.

Pairing methods:
Just works, Passkey Entry, and Out of
Band

Full control over the pairing algorithm for strict security requirements.

ATT Features Description

Server protocol

Client protocol

Max MTU size 23 bytes
Page 10

S110 nRF51822 SoftDevice Specification v1.3
 Table 7 Logical Link Control and Adaptation Layer Protocol (L2CAP) features in the BLE stack

 Table 8 Controller, Link Layer (LL) features in the BLE stack

 Table 9 Proprietary features in the BLE stack

L2CAP Features Description

27 byte MTU size

Low level L2CAP API access Ability to send arbitrary L2CAP data from the application.

Controller, Link Layer Features Description

Slave role

Slave connection update

Encryption

Proprietary Feature Description

TX Power control Access for the application to change TX power settings anytime.

Full Privacy 1.1 support Synchronous and low power solution for BLE enhanced privacy with
hardware-accelerated address resolution for whitelisting.

Master Boot Record (MBR) for Device
Firmware Update (DFU)

Enables over-the-air SoftDevice replacement, giving full SoftDevice update
capability.
Page 11

S110 nRF51822 SoftDevice Specification v1.3

Page 12

4 SoC library
The following features ensure the Application and SoftDevice coexist with safe sharing of common SoC
resources.

 Table 10 System on Chip features

Feature Description

Mutex The SoftDevice implements atomic mutex acquire and release operations that are
safe for the application to use. Use this mutex to avoid disabling global interrupts in
the application, because disabling global interrupts will interfere with the
SoftDevice and may lead to dropped packets or lost connections.

NVIC Gives the application access to all NVIC features without corrupting SoftDevice
configurations.

Rand Provides random numbers from the hardware random number generator.

Power Access to POWER block configuration while the SoftDevice is enabled:
• Access to RESETREAS register
• Set power modes
• Configure power fail comparator
• Control RAM block power
• Use general purpose retention register
• Configure DC/DC converter state

• OFF
• ON
• AUTOMATIC - The SoftDevice will manage the DC/DC converter state

by switching it on for all Radio Events and off all other times.

Clock Access to CLOCK block configuration while the SoftDevice is enabled. Allows the
HFCLK Crystal Oscillator source to be requested by the application.

Wait for event Simple power management call for the application to use to enter a sleep or idle
state and wait for an event.

PPI Configuration interface for PPI channels and groups reserved for an application.

Concurrent Multiprotocol
Timeslot API

Schedule other radio protocol activity, see Chapter 8 “Concurrent Multiprotocol
Timeslot API” on page 19.

Radio notification Configure Radio Notification signals on ACTIVE and/or nACTIVE.
See Chapter 7 “Radio Notification” on page 15.

Block encrypt (ECB) Safe use of 128 bit AES encrypt HW accelerator.

Event API Fetch asynchronous events generated by the SoC library.

Flash memory API Application access to flash write, erase, and protect. Can be safely used during all
protocol stack states.

Temperature Application access to the temperature sensor.

Master Boot Record The MBR provides support for Bootloader implementation and Firmware update
functions.

S110 nRF51822 SoftDevice Specification v1.3

Page 13

5 SoftDevice Manager
The following feature enables the Application to manage the SoftDevice on a top level.

 Table 11 SoftDevice Manager

Feature Description

SoftDevice control API Control of SoftDevice state through enable and disable. On enable, the low
frequency clock source selects between the following options:

• RC oscillator
• Crystal oscillator

S110 nRF51822 SoftDevice Specification v1.3

Page 14

6 Flash memory API
Asynchronous flash memory operations are performed using the SoC library API and provide the
application with flash write, flash erase, and flash protect support through the SoftDevice. This interface can
safely be used during active BLE connections.

The flash memory access is scheduled in between the protocol radio events. For short connection or
advertisement intervals, the time required for the flash memory access may be larger than the connection
or advertisement interval. In this case, protocol radio events may be skipped, up to a maximum of three
connection events or one advertisement event. The flash memory access may also be delayed slightly to
minimize the disturbance of the BLE radio protocol. In some cases as described below, the flash memory
access may fail and generate a timeout event: NRF_EVT_FLASH_OPERATION_ERROR. In this case, retry
the flash erase or write operation.

 Table 12 Behavior with BLE traffic and concurrent flash write/erase

BLE activity Flash write

BLE Connectable Undirected
Advertising
BLE Nonconnectable
Advertising
BLE Scannable Advertising

Typically allows full write size (256 words) attempts, but shorter write sizes have
higher probability of success.

BLE Connectable Directed
Advertising

Does not allow write attempts while advertising is active (maximum 1.28
seconds). In this case, retrying flash writes will only succeed after the advertising
activity has finished.

BLE Connected state

Typically allows full write size (256 words) attempts. May generate flash timeout
event: NRF_EVT_FLASH_OPERATION_ERROR if critical radio events need to
occur. Critical radio events are expected at connection setup, at connection
update, at disconnection and just before supervision timeout. In this case, retry
the flash write operation.

BLE activity Flash erase

BLE Connectable Undirected
Advertising
BLE Nonconnectable
Advertising
BLE Scannable Advertising

Typically allows flash erase attempts.

BLE Connectable Directed
Advertising

Does not allow flash erase attempts while advertising is active (maximum 1.28
seconds). In this case, retrying flash erase will only succeed after the directed
advertising is finished.

BLE Connected state

Typically allows flash erase attempts. May generate flash timeout event:
NRF_EVT_FLASH_OPERATION_ERROR if critical radio events need to occur.
Critical radio events are expected at connection setup, at connection update, at
disconnection and just before supervision timeout. In this case, retry the flash
erase operation.

S110 nRF51822 SoftDevice Specification v1.3
7 Radio Notification
Radio Notification is a configurable feature that enables ACTIVE and INACTIVE (nACTIVE) signals from the
SoftDevice to the application notifying when the radio is in use. The signal is sent using software interrupt,
as specified in Table 24 on page 34.

The ACTIVE signal, if enabled, is sent before the Radio Event starts. The nACTIVE signal is sent at the end of
the Radio Event. These signals can be used by the application programmer to synchronize application logic
with Radio activity and packet transfers. For example, the ACTIVE signal can be used to shut off external
devices to manage peak current drawn during periods when the radio is on, or to trigger sensor data
collection for transmission in the Radio Event.

Figure 3 shows the active signal in relation to the Radio Event.

 Figure 3 BLE Radio Notification

Many packets can be sent and received in one Radio Event. Radio Notification events will be as shown in
Figure 4.

 Figure 4 BLE Radio Notification, multiple packet transfers

nACTIVEACTIVE

P

tndist

tprep

ACTIVE

TXRX

tnACTIVEtevent

T
X

R
X

ACTIVE

P

tndist

tprep

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

T
X

R
X

nACTIVE

tinterval

tevent

tP
Page 15

S110 nRF51822 SoftDevice Specification v1.3
Table 13 describes the notation used in Figure 3 and Figure 4 on page 15.

 Table 13 Radio Notification figure labels

Table 14 shows the ranges of the timing symbols in Figure 3 on page 15. See also Table 15 on page 18.

 Table 14 BLE Radio Notification timing ranges

Label Description Notes

ACTIVE The ACTIVE signal prior to a Radio Event.

nACTIVE The nACTIVE signal after a Radio Event. Because both ACTIVE and nACTIVE use the same software
interrupt, it is up to the application to manage them. If
both ACTIVE and nACTIVE are configured ON by the
application, there will always be an ACTIVE signal before
an nACTIVE signal.

P CPU processing in the lower stack
interrupt between ACTIVE and RX.

The CPU processing may occur anytime, up to tprep before
RX.

RX Reception of packet.

TX Transmission of packet.

tndist The notification distance - the time
between ACTIVE and first RX/TX in a
Radio Event.

This time is configurable by the application developer and
can be changed in between Radio Events.

tevent The time used in a Radio Event.

tprep The time before first RX/TX to prepare
and configure the radio.

The application will be interrupted by the LowerStack
during tprep.
Note: All packet data to send in an event should be sent to
the stack tprep before the Radio starts.

tP Time used for preprocessing before the
Radio Event.

tinterval Time between Radio Events as per the
protocol.

Value Range (μs)

tndist 800, 1740, 2680, 3620, 4560, 5500

tevent 550 to 4850 - Undirected and scannable advertising, 0 to 31 byte payload, 3 channels
550 to 2250 - Non-connectable advertising, 0 to 31 byte payload, 3 channels
1.28 seconds - Directed advertising, 3 channels
900 to 5400 Slave - 1 to 6 packets RX and TX unencrypted data when connected
1000 to 5800 Slave - 1 to 6 packets RX and TX encrypted data when connected

tprep 290 to 1550

tP ≤150
Page 16

S110 nRF51822 SoftDevice Specification v1.3
Using the numbers from Table 14 on page 16, the amount of CPU time available between ACTIVE and a
Radio Event is:

Shown below is the amount of time before stack interrupts begin. Data packets must be transferred to the
stack using the API within this time from the ACTIVE signal if they are to be sent in the next Radio Event.

Note: tprep may be greater than tndist when t ndist = 800. If time is required to handle packets or
manage peripherals before interrupts are generated by the stack, t ndist should be set greater
than 1500.

To maximize the chance that the notification signal is available to the application in the configured time, the
following rule is applied:

tndist tP–

tndist tprep maximum –

tndist tevent tinterval<+
Page 17

S110 nRF51822 SoftDevice Specification v1.3
The stack will limit the length of a Radio Event (tevent), thereby reducing the maximum packets exchanged,
to accommodate the selected tndist. Figure 5 shows consecutive Radio Events with Radio Notification and
illustrates the limitation in tevent which may be required to ensure tndist is preserved.

 Figure 5 Consecutive Radio Events with BLE Radio Notification

Table 15 shows the limitation on the maximum number of packets which can be transferred per Radio Event
given a tndist and tinterval combination.

 Table 15 Maximum packet transfer per BLE Radio Event for given combinations of tndist and tinterval.

tndist
tinterval

7.5 ms 10 ms ≥ 15 ms

800 6 6 6

1740 5 6 6

2680 4 6 6

3620 3 5 6

4560 2 4 6

5500 1 3 6

T
X

R
X

nACTIVEACTIVE

P

tndist

tprep

tinterval

tevent

T
X

R
X

nACTIVEACTIVE

P

tndist

tprep tevnt
Page 18

S110 nRF51822 SoftDevice Specification v1.3
8 Concurrent Multiprotocol Timeslot API
The Multiprotocol Timeslot API allows an application developer to safely schedule 2.4 GHz proprietary Radio
usage while Bluetooth low energy is in use by the device. This allows the nRF51 device to be part of a BLE
network and an alternative network of wireless devices at the same time.

The Timeslot feature gives the application access to the radio and other restricted peripherals, which it does
by queueing the application's use of these peripherals with those of the SoftDevice. Using this feature, the
application can run other radio protocols (third party custom or proprietary protocols running from
application space) concurrently with the internal protocol stack(s) of the SoftDevice. It can also be used to
suppress SoftDevice radio activity and reserve guaranteed time for application activities with hard timing
requirements which cannot be met by using the SoC Radio Notifications.

The Timeslot feature is part of the SoC library. The feature works by having the SoftDevice time-multiplex
access to peripherals between the application and itself. Through the SoC API, the application can open a
Timeslot session and request timeslots. When a timeslot is granted, the application has exclusive and real-
time access to the normally blocked RADIO, TIMER0, CCM, AAR, and PPI (channels 8 – 15) peripherals and
can use these freely for the length of the timeslot, see Table 22 “Hardware access type definitions” on
page 32 and Table 23 “Peripheral protection and usage by SoftDevice” on page 33.

8.1 Request types
Timeslots may be requested as earliest possible, in which case the timeslot occurs at the first available
opportunity. In the request, the application can limit how far into the future the timeslot may be placed.
Timeslots may also be requested at a given time. In this case, the application specifies in the request when
the timeslot should start and is measured from the start of the previous timeslot. Note that the first request
in a session must always be earliest possible to create the timing reference point for later timeslots. Finally,
the application may request to extend an on-going timeslot. Extension requests may be repeated,
prolonging the timeslot even further.

Timeslots requested as earliest possible are useful for single timeslots and for non-periodic or non-timed
activity. Timeslots requested at a given time relative to the previous timeslot are useful for periodic and
timed activities; for example, a periodic proprietary radio protocol. Timeslot extension may be used to
secure as much continuous radio time as possible for the application; for example, running an “always on”
radio listener.

8.2 Request priorities
Timeslots can be requested at either high or normal priority, indicating how important it is for the
application to access the specified peripheral. To minimize the influence of the use of the Multiprotocol
Timeslot API on other activities, using normal priority should be considered best practice. The high priority
should only be used when required, such as for running a radio protocol with certain timing requirements
that are not met using normal priority.
Page 19

S110 nRF51822 SoftDevice Specification v1.3
8.3 Timeslot length
The length of the timeslot is specified by the application in the request and ranges from 100 μs to 100 ms.
Longer continuous timeslots can be achieved by requesting to extend the current timeslot. Successive
extensions will give a timeslot as long as possible within the limits set by other SoftDevice activities, up to a
maximum of 128 s.

8.4 Scheduling
Timeslots requested by the application are scheduled within the SoftDevice along with the SoftDevice
protocol and the Flash API activities. Whether the timeslot request is granted and access to the peripherals
given is based on when the request was made, when the timeslot is wanted, the priority of the request, and
the requested length of the timeslot. If the requested timeslot does not collide with other activities, the
request will be granted and the timeslot scheduled. If the requested timeslot collides with an already
scheduled activity with equal or higher priority, the request will be blocked. If a later arriving activity of
higher priority causes a collision, the request will be canceled and the scheduled timeslot revoked. However,
a timeslot that has already started cannot be interrupted or canceled. Timeslots requested at high priority
will cancel other activities scheduled at lower priorities in case of a collision. Also, requests for short
timeslots have a higher probability of succeeding than requests for longer timeslots because shorter
timeslots are easier to fit into the schedule.

Note: Radio Notification signals behave the same way for timeslots requested through the
Multiprotocol Timeslot interface as for SoftDevice internal activities, see Chapter 7 “Radio
Notification” on page 15 for more information. If Radio Notifications are enabled,
Multiprotocol Timeslots will be notified.

8.5 Performance considerations
Since the Multiprotocol Timeslot API shares core peripherals with the SoftDevice, and are scheduled along
with other SoftDevice activities, use of the Timeslot feature may influence SoftDevice performance.
Therefore the Multiprotocol Timeslot API should be used with regard for the application configuration of the
SoftDevice protocol. All timeslot requests should use the lowest priority to ensure that interruptions to
other activity is minimized. In addition, timeslots should be kept as short as possible in order to minimize
the impact on the overall performance of the device. Similarly, requesting a shorter timeslot and then
extending it gives more flexibility to schedule other activities than requesting a longer timeslot.
Page 20

S110 nRF51822 SoftDevice Specification v1.3
8.6 Multiprotocol timeslot API
A Timeslot session is opened and closed using API calls. Within a session, there is an API call to request
timeslots. For communication back to the application, the feature will generate events, which are handled
by the normal application event handler, and signals, which must be handled by a callback function (the
signal handler) provided by the application. The signal handler can also return actions to the SoftDevice.
Within a timeslot, only the signal handler is used.

Note: The API calls, events, and signals are only given by their full names in the tables where they are
listed the first time. Elsewhere, only the last part of the name is used.

8.6.1 API calls

The following API calls are defined:

 Table 16 API calls

8.6.2 Timeslot events

Events come from the SoftDevice scheduler and are used for timeslot session management. Events are
received in the application event handler callback function, which will typically be run in App(L) priority, see
Section 11.3 “BLE peripheral performance” on page 38.

The following events are defined:

 Table 17 Timeslot events

API call Description

sd_radio_session_open() Open a timeslot session.

sd_radio_session_close() Close a timeslot session.

sd_radio_request() Request a timeslot.

Event Description

NRF_EVT_RADIO_SESSION_IDLE Session status: The current timeslot session has no remaining scheduled
timeslots.

NRF_EVT_RADIO_SESSION_CLOSED Session status: The timeslot session is closed and all acquired resources are
released.

NRF_EVT_RADIO_BLOCKED Timeslot status: The last requested timeslot could not be scheduled, due to a
collision with already scheduled activity or for other reasons.

NRF_EVT_RADIO_CANCELED Timeslot status: The scheduled timeslot was preempted by higher priority activity.

NRF_EVT_RADIO_SIGNAL_
CALLBACK_INVALID_RETURN

Signal handler: The last signal hander return value contained invalid parameters.
Page 21

S110 nRF51822 SoftDevice Specification v1.3
8.6.3 Timeslot signals

Signals come from the peripherals and arrive within a timeslot. Signals are received in a signal handler
callback function that the application must provide. The signal handler runs in LowerStack priority, which is
the highest priority in the system, see Section 11.3 “BLE peripheral performance” on page 38.

 Table 18 Timeslot signals

8.6.4 Signal handler return actions

The return value from the application signal handler to the SoftDevice contains an action. The signal handler
action return values are:

 Table 19 Signal handler action return values

8.6.5 Ending a timeslot in time

The application is responsible for keeping track of timing within the timeslot and ensuring that the
application’s use of the peripherals does not last for longer than the granted timeslot. For these purposes,
the application is granted access to the TIMER0 peripheral for the length of the timeslot. This timer is started
from zero by the SoftDevice at the start of the timeslot, and is configured to run at 1 MHz. The
recommended practice is to set up a timer interrupt that expires before the timeslot expires, with enough
time left of the timeslot to do any clean up actions before the timeslot ends. Such a timer interrupt can also
be used to request an extension of the timeslot, but there must still be enough time to clean up if the
extension is not granted.

Signal Description

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_START

Start of the timeslot. The application now has exclusive access to the peripherals
for the full length of the timeslot.

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_RADIO

Radio interrupt, for more information, see nRF51 Reference Manual, chapter 16, 2.4
GHz radio (RADIO).

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_TIMER0

Timer interrupt, for more information, see nRF51 Reference Manual, chapter 17,
Timer/counter (TIMER).

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_EXTEND_SUCCEEDED

The latest extend action succeeded.

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_EXTEND_FAILED

The latest extend action failed.

Return value Description

NRF_RADIO_SIGNAL_CALLBACK_
ACTION_NONE

The timeslot processing is not complete. The SoftDevice will take no action.

NRF_RADIO_SIGNAL_CALLBACK_
ACTION_END

The current timeslot has ended. The SoftDevice can now resume other activities.

NRF_RADIO_SIGNAL_CALLBACK_
ACTION_REQUEST_AND_END

The current timeslot has ended. The SoftDevice is requested to schedule a new
timeslot, after which it can resume other activities.

NRF_RADIO_SIGNAL_CALLBACK_
ACTION_EXTEND

The SoftDevice is requested to extend the ongoing timeslot.
Page 22

S110 nRF51822 SoftDevice Specification v1.3
8.6.6 The signal handler runs at LowerStack priority

The signal handler runs at LowerStack priority, which is the highest priority. Therefore, it cannot be
interrupted by any other activity. Also, as for the App(H) interrupt, SVC calls are not available in the signal
handler. It is a requirement that processing in the signal handler does not exceed the granted time of the
timeslot. If it does, the behavior of the SoftDevice is undefined and the SoftDevice may malfunction.

The signal handler may be called several times during a timeslot. It is recommended to use the signal
handler only for the real time signal handling. When a signal has been handled, exit the signal handler to
wait for the next signal. Processing other than signal handling should be run at lower priorities, outside of
the signal handler.
Page 23

S110 nRF51822 SoftDevice Specification v1.3
8.7 Examples
In this section we provide a few timeslot examples and describe the sequence of events within them.

8.7.1 Complete session example

Figure 6 shows a complete timeslot session. In this case, only timeslot requests from the application are
being scheduled, there is no SoftDevice activity.

At start, the application calls the API to open a session and to request a first timeslot (which must be of type
earliest). The SoftDevice schedules the timeslot. At the start of the timeslot, the SoftDevice calls the
application signal hander with the START signal. After this, the application is in control and has access to the
peripherals. The application will then typically set up TIMER0 to expire before the end of the timeslot, to get
a signal that the timeslot is about to end. In the last signal in the timeslot, the application uses the signal
handler return action to request a new timeslot 100 ms after the first.

The following timeslots (the middle timeslot in Figure 6) are all similar. The signal handler is called with the
START signal at the start of the timeslot. The application then has control, but must arrange for a signal to
come towards the end of the timeslot. As the return value for the last signal in the timeslot, the signal
handler requests a new timeslot using the REQUEST_AND_END action.

Eventually, the application does not require the radio any more. So, at the last signal in the last timeslot, the
application returns END from the signal handler. The SoftDevice then sends an IDLE event to the application
event handler. The application calls session_close, and the SoftDevice sends the CLOSED event. The session
has now ended.

 Figure 6 Complete session example
Page 24

S110 nRF51822 SoftDevice Specification v1.3
8.7.2 Blocked timeslot example

Figure 7 shows a situation in the middle of a session where a requested timeslot cannot be scheduled. At the
end of the first timeslot in Figure 7, the application signal handler returns a REQUEST_AND_END action to
request a new timeslot. The new timeslot cannot be scheduled as requested, due to a collision with an
already scheduled SoftDevice activity. The application is notified about this by a BLOCKED event to the
application event handler. The application then makes a new request, further out in time. This requests
succeeds (it does not collide with anything), and a new timeslot is scheduled.

 Figure 7 Blocked timeslot example
Page 25

S110 nRF51822 SoftDevice Specification v1.3
8.7.3 Canceled timeslot example

Figure 8 on page 27 shows a situation in the middle of a session where a requested and scheduled
application timeslot is being revoked. The upper part of Figure 8 on page 27 shows that the application has
ended a timeslot by returning the REQUEST_AND_END action, and the new timeslot has been scheduled.
The new scheduled timeslot has not been started yet, it is still some time into the future. The lower part of
Figure 8 on page 27 shows the situation some time later. In the meantime, time for a SoftDevice activity of
higher priority has been requested internally in the SoftDevice, at a time which collides with the scheduled
application timeslot. To accommodate the higher priority request, the application timeslot has been
removed from the schedule, and the higher priority SoftDevice activity scheduled instead. The application is
notified about this by a CANCELED event to the application event handler. The application then makes a
new request, further out in time. This requests succeeds (it does not collide with anything), and a new
timeslot is scheduled.
Page 26

S110 nRF51822 SoftDevice Specification v1.3
 Figure 8 Canceled timeslot example
Page 27

S110 nRF51822 SoftDevice Specification v1.3
8.7.4 Timeslot extension example

Figure 9 shows how an application can use timeslot extension to create long continuous timeslots that will
give the application as much radio time as possible while disturbing the SoftDevice activities as little as
possible. In the first slot in Figure 9, the application uses the signal handler return action to request an
extension of the timeslot. The extension is granted, and the timeslot is seamlessly prolonged. The second
attempt at extending the timeslot fails, as a further extension would cause a collision with a SoftDevice
activity that has been scheduled. Therefore the application does a new request, of type earliest. This results
in a new radio timeslot being scheduled immediately after the SoftDevice activity. This new timeslot can be
extended a number of times.

 Figure 9 Timeslot extension example
Page 28

S110 nRF51822 SoftDevice Specification v1.3
9 Bootloader
The SoftDevice supports the use of a bootloader. A bootloader has access to the full SoftDevice API and can
be implemented just as any other application that uses a SoftDevice. In particular, the bootloader can make
use of the SoftDevice API to enable protocol stack interaction.

The use of a bootloader is supported in the SoftDevice architecture by dividing the application code space
region (R1) into two separate regions. The lower region, from CLENR0 and upwards, contains the
application, while the upper region contains the bootloader. The start of the upper region, the bootloader's
base address, is set by the UICR.BOOTADDR register.

 Figure 10 R0 (SoftDevice) and R1 (Application + Bootloader).

At reset, the SoftDevice checks the UICR.BOOTADDR register. If this register is blank (0xFFFFFFFF), the
SoftDevice assumes that no bootloader is present. It then forwards interrupts to the application and
executes the application as usual. If the BOOTADDR register is set to an address different from 0xFFFFFFFF,
the SoftDevice assumes that the bootloader vector table is located at this address. Interrupts are then
forwarded to the bootloader at this address and execution will be started at the bootloader reset handler.

For a bootloader to transfer execution from itself to the application, the bootloader should first call the
sd_softdevice_forward_to_application() SoC function to forward interrupts to the
application instead of to the bootloader. The bootloader should then branch to the application’s reset
handler after reading the address of the handler from the Application Vector Table.

 Table 20 UICR.BOOTADDR register contents

UICR.BOOTADDR contents Interpretation

0xFFFFFFFF No bootloader present or enabled.

<ADDR> Bootloader present with base address <ADDR>.

SoftDevice

Application

Application Vector Table

SoftDevice Vector Table

Bootloader

CLENR0

BOOTADDRBootloader Vector Table

Bootloader

0x00000000

R1

R0
Page 29

S110 nRF51822 SoftDevice Specification v1.3
9.1 Master Boot Record (MBR)
The Master Boot Record (MBR) makes it possible to update the SoftDevice and Bootloader. The MBR is first
placed in flash memory where the System Vector table resides. All exceptions (reset, hard fault, interrupts
SVC), are processed first by the MBR. The MBR is not updated between versions of the SoftDevice, meaning
during an update process, the MBR is never erased. The MBR ensures safe restart of the copy process if an
unexpected reset occurs.

The Bootloader is responsible for getting a new SoftDevice and/or bootloader stored in the application area.
When the Bootloader wants to update the SoftDevice, it calls the copy function in the MBR which writes the
new SoftDevice over the existing SoftDevice. The Bootloader is responsible for handling unexpected resets
and restarts the copy process after resets.

If the Bootloader wants to update the bootloader itself, it invokes a “copy bootloader” function in the MBR.
In this case the MBR handles unexpected resets during the copy process and guarantees the copy process
will resume after an unexpected reset. On completion the new bootloader will be started.

 Figure 11 Master Boot Record

On every reset the MBR will start the Bootloader and forward all interrupts to the Bootloader without
invoking the SoftDevice. The reason for this is because the MBR cannot know if the SoftDevice is corrupt or
not. The Bootloader can start the SoftDevice by calling a function in the MBR, which causes the MBR to
forward interrupts to the SoftDevice. After this, the Bootloader can use the SoftDevice as a normal
application.

SoftDevice

Application

Application Vector Table

SoftDevice Vector Table

Bootloader

CLENR0

BOOTADDR
Bootloader Vector Table

Bootloader

0x00001000

R1

R0

MBR
MBR vector table 0x00000000
Page 30

S110 nRF51822 SoftDevice Specification v1.3
10 SoftDevice resource requirements
After the SoftDevice is installed on a System on Chip (SoC) it is located in the lower part of the code memory
space. When enabled, the SoftDevice controls and uses resources from the chip, including reserving RAM
space for its operation and access to hardware peripherals. This chapter describes how the SoftDevice –
when both enabled and disabled - uses memory and hardware resources.

10.1 Memory resource map and usage
The memory map for program memory and RAM at run time with the SoftDevice enabled is illustrated in
Figure 12 below. Memory resource requirements, both when the SoftDevice is enabled and disabled, are
shown in Table 21 on page 32.

 Figure 12 Memory resource map

SoftDevice

Region 0

0x00000000

Application

Region 1

SizeOfProgMem

0x000000C0

Application Vector Table

System Vector Table

CODE_R1_BASE

RAMProgram Memory

SoftDevice
Region 0

Application
Region 1

RAM_R1_BASE

0x20000000 +
SizeOfRAM Call Stack

CODE_R1_BASE + 0xC0

Heap

0x20000000
Page 31

S110 nRF51822 SoftDevice Specification v1.3
 Table 21 S110 Memory resource requirements

10.2 Hardware blocks and interrupt vectors
Table 22 defines access types used to indicate the availability of hardware blocks to the application.
Table 23 on page 33 specifies the access the application has, per hardware block, both when the SoftDevice
is enabled and disabled.

 Table 22 Hardware access type definitions

Flash S110 Enabled S110 Disabled

Amount 88 kB1 88 kB

CODE_R1_BASE 0x00016000 0x00016000

RAM S110 Enabled S110 Disabled

Amount 8 kB 8 bytes

RAM_R1_BASE 0x20002000 0x20000008

Call stack2 S110 Enabled S110 Disabled

Maximum usage 1536 bytes 0 kB

Heap S110 Enabled S110 Disabled

Maximum allocated bytes 0 bytes 0 bytes

1. 1 kB = 1024 bytes.
2. This is only the call stack used by the SoftDevice at run time. The application call stack memory

usage must be added for the total call stack size to be set in the user application.

Access Definition

Restricted Used by the SoftDevice and outside the application sandbox.
Application has limited access through the SoftDevice API.

Blocked Used by the SoftDevice and outside the application sandbox.
Application has no access.

Open Not used by the SoftDevice.
Application has full access.
Page 32

S110 nRF51822 SoftDevice Specification v1.3
 Table 23 Peripheral protection and usage by SoftDevice

ID Base address Instance Access
(SoftDevice enabled)

Access
(SoftDevice disabled)

0 0x40000000 MPU Restricted Open

0 0x40000000 POWER Restricted Open

0 0x40000000 CLOCK Restricted Open

1 0x40001000 RADIO Blocked Open

2 0x40002000 UART0 Open Open

3 0x40003000 SPI0/TWI0 Open Open

4 0x40004000 SPI1/TWI1/SPIS1 Open Open

...

6 0x40006000 GPIOTE Open Open

7 0x40007000 ADC Open Open

8 0x40008000 TIMER0 Blocked Open

9 0x40009000 TIMER1 Open Open

10 0x4000A000 TIMER2 Open Open

11 0x4000B000 RTC0 Blocked Open

12 0x4000C000 TEMP Restricted Open

13 0x4000D000 RNG Restricted Open

14 0x4000E000 ECB Restricted Open

15 0x4000F000 CCM Blocked Open

15 0x4000F000 AAR Blocked Open

16 0x40010000 WDT Open Open

17 0x40011000 RTC1 Open Open

18 0x40012000 QDEC Open Open

19 00x4001300 LCOMP Open Open

20 0x40014000 Software interrupt Open Open

21 0x40015000 Radio Notification Restricted1 Open

22 0x40016000 SoC Events Blocked Open

23 0x40017000 Software interrupt Blocked Open

24 0x40018000 Software interrupt Blocked Open

25 0x40019000 Software interrupt Blocked Open

...

30 0x4001E000 NVMC Restricted Open

31 0x4001F000 PPI Restricted Open

NA 0x50000000 GPIO P0 Open Open

NA 0xE000E100 NVIC Restricted2 Open

1. Blocked only when radio notification signal is enabled. See Table 24 on page 34 for software interrupt allocation.
2. Not protected. For robust system function, the application program must comply with the restriction and use the

NVIC API for configuration when the SoftDevice is enabled.
Page 33

S110 nRF51822 SoftDevice Specification v1.3
10.3 Application signals - software interrupts
Software interrupts are used by the SoftDevice to signal a change in events. Table 24 shows the allocation of
software interrupt vectors to SoftDevice signals.

 Table 24 Software interrupt allocation

10.4 Programmable Peripheral Interconnect (PPI)
When the SoftDevice is enabled, the PPI is restricted with only some PPI channels and groups available to
the application. Table 25 shows how channels and groups are assigned between the application and
SoftDevice.

Note: All PPI channels are available to the application when the SoftDevice is disabled.

 Table 25 PPI channel and group availability

Software interrupt (SWI) Peripheral ID SoftDevice Signal

0 20 Unused by the SoftDevice and available to the application.

1 21 Radio Notification - optionally configured through API.

2 22 SoftDevice Event Notification.

3 23 Reserved.

4 24 LowerStack processing - not user configurable.

5 25 UpperStack signaling - not user configurable.

PPI channel allocation SoftDevice enabled SoftDevice disabled

Application Channels 0 - 7 Channels 0 - 15

SoftDevice Channels 8 - 15 -

Preprogrammed channels SoftDevice enabled SoftDevice disabled

Application - Channels 20 - 31

SoftDevice Channels 20 - 31 -

PPI group allocation SoftDevice enabled SoftDevice disabled

Application Groups 0 - 1 Groups 0 - 3

SoftDevice Groups 2 - 3 -
Page 34

S110 nRF51822 SoftDevice Specification v1.3
10.5 SVC number ranges
Table 26 shows which SVC numbers an application program can use and which numbers are used by the
SoftDevice.

Note: The SVC number allocation does not change with the state of the SoftDevice (enabled or
disabled).

 Table 26 SVC number allocation

10.6 External requirements
For correct operation of the SoftDevice, it is a requirement that the 16 MHz crystal oscillator (16 MHz XOSC)
startup time is less than 1.5 ms. The external clock crystal and other related components must be chosen
accordingly. Data for the device XOSC input can be found in the product specification for the device.

SVC number allocation SoftDevice enabled SoftDevice disabled

Application 0x00-0x0F 0x00-0x0F

SoftDevice 0x10-0xFF 0x10-0xFF
Page 35

S110 nRF51822 SoftDevice Specification v1.3
11 Processor availability and interrupt latency
This chapter documents key SoftDevice performance parameters for processor availability and interrupt
latency.

11.1 Interrupt latency due to SoC framework

Latency, additional to ARM® Cortex™-M0 hardware architecture latency, is introduced by SoftDevice logic to
manage interrupt events. This latency occurs when an interrupt is forwarded to the application from the
SoftDevice and is part of the minimum latency for each application interrupt. The maximum application
interrupt latency is dependent on protocol stack activity as described in Section 11.2 “Processor availability”
on page 37.

 Table 27 Additional latency due to SoftDevice processing

See Table 23 on page 33 for open, blocked, and restricted peripherals.

Interrupt CPU cycles Latency at 16 MHz

Open peripheral interrupt 49 3.1 μs

Blocked or restricted peripheral interrupt
(only forwarded when SoftDevice disabled)

67 4.2 μs

Application SVC interrupt 43 2.68 μs
Page 36

S110 nRF51822 SoftDevice Specification v1.3
11.2 Processor availability
“Appendix A: SoftDevice architecture” in the nRF51 Reference Manual describes interrupt management in
SoftDevices and is required knowledge for understanding this section.

The SoftDevice protocol stack runs in the LowerStack and UpperStack interrupts. These protocol stack
interrupts determine the processor availability and latencies for the interrupts/priorities available to the
application - App(H), App(L), and main.

LowerStack processing will determine the processor availability and interrupt latency for App(H) (and all
lower priorities), while LowerStack, App(H), and UpperStack processing together will determine the
processor availability for App(L) and main context. Figure 13 illustrates UpperStack activity (API calls) and
LowerStack activity (Protocol events) and the time reserved/not reserved for those interrupts.

 Figure 13 UpperStack and LowerStack activity

Table 28 describes the terms used for interrupt latency timings.

 Table 28 SoftDevice interrupt latency definitions

Parameter Description

tISR
(LowerStack)

Interrupt processing time in LowerStack. This is the interrupt
latency for App(H) (and lower priorities).

tnISR
(LowerStack)

Time between LowerStack interrupts. This is the time available to
run for App(H) (and lower priorities).

tISR
(UpperStack)

Interrupt processing time in UpperStack. This is the interrupt
latency for App(L) and processing latency for main context.

tnISR
(UpperStack)

Time between UpperStack interrupts. This is the time available to
run for App(L) and main context.

Priorities Protocol EventsAPI Calls

tnISR

(UpperStack)

tISR

(UpperStack)

tnISR

(LowerStack)

tISR

(LowerStack)
tISR

(LowerStack)

tISR

(UpperStack)

ttotal

LowerStack

Application High
App(H)

UpperStack
(SVC)

Application Low
App(L)

MAIN
Page 37

S110 nRF51822 SoftDevice Specification v1.3
11.3 BLE peripheral performance
This section describes the processor availability and interrupt latency for the BLE peripheral stack.

During BLE protocol events, LowerStack interrupts are extended by a CPU Suspend state during radio
activity to improve link integrity. This means LowerStack interrupts will block application and UpperStack
processing during a Radio Activity for a time proportional to the number of packets transferred during the
Radio activity period.

11.3.1 BLE peripheral advertising

 Figure 14 Advertising

For advertising, the pattern of LowerStack activity is as follows: there is first a Radio prepare, followed by
three (or more for directed advertising) instances of Radio activity. The last Radio activity may be followed
by UpperStack processing.

 Table 29 SoftDevice interrupt latency LowerStack for an advertising event

Parameter Description Nominal

tISR
(LowerStack)

Maximum interrupt latency during Radio activity.
Includes the time the CPU is used by the LowerStack for processing
and the time the CPU is suspended during Radio activity. The longest
radio activity consists of an advertisement packet with maximum data,
a scan request, and a scan response with maximum data.

1700 μs

tnISR
(LowerStack)

Minimum time between LowerStack interrupts within an
advertisement event. Time within and between advertisement events
is application dependent.

150 μs

Priorities
tnISR

(LowerStack)

tISR
(LowerStack)

ttotal

LowerStack

Application High
App(H)

UpperStack
(SVC)

Application Low
App(L)

MAIN

tISR
(LowerStack)

tISR
(LowerStack)

tnISR
(LowerStack)

tnISR
(LowerStack)

tnISR
(LowerStack)

tISR
(LowerStack)

Radio activity 1 Radio activity 2 Radio activity n

tnISR
(LowerStack)

tISR
(UpperStack)
Page 38

S110 nRF51822 SoftDevice Specification v1.3
11.3.2 BLE peripheral connection

 Figure 15 Connection

For connection events, the LowerStack activity consists of RadioPrepare followed by Radio activity. The
Radio activity may be followed by UpperStack processing.

 Table 30 SoftDevice interrupt latency LowerStack for a connection event

The data in Table 30 is for a connection under good conditions. Continued packet loss, clock drift, and other
effects may force longer Radio activity and longer LowerStack processing. This may affect the CPU
availability and interrupt latency for lower priorities.

Parameter Description Packets Nominal

tISR(lower stack)1

Maximum interrupt latency during Radio Event.
Includes the time the CPU is used by the
LowerStack for processing and the time the CPU
suspended during radio activity. In each case,
maximum encrypted packet length in both RX and
TX are assumed.

1 1180 μs

tISR(lower stack) 2 2 2136 μs

tISR(lower stack) 3 3 3092 μs

tISR(lower stack) 4 4 4048 μs

tISR(lower stack) 5 5 5004 μs

tISR(lower stack) 6 6 5960 μs

tnISR(lower stack) Minimum time between LowerStack interrupts. n/a 140 μs

Priorities
tnISR

(LowerStack)

tISR
(LowerStack)

ttotal

LowerStack

Application High
App(H)

UpperStack
(SVC)

Application Low
App(L)

MAIN

tISR
(LowerStack)

tnISR
(LowerStack)

Radio activity

tnISR
(LowerStack)

tISR
(UpperStack)
Page 39

S110 nRF51822 SoftDevice Specification v1.3
11.3.3 API calls

The following table describes the timing for API call handling in the UpperStack.

 Table 31 SoftDevice interrupt latency - UpperStack

11.3.4 CPU utilization in connection

Table 32 shows expected CPU utilization percentages for the UpperStack and LowerStack given a set of
typical stack connection parameters.

Note: UpperStack utilization is based only on the processing required to access the GATT attributes
and transfer data to and from the application when the data is transferred.

 Table 32 Processor usage and remaining availability for example BLE connection configurations

11.4 Performance with Flash memory API and Concurrent Multiprotocol
Timeslot API
The LowerStack interrupt is also used by the Flash memory API processing and by the Concurrent
Multiprotocol Timeslot API processing. Use of these APIs may therefore affect CPU availability and interrupt
latencies for all lower priorities. The effects of this are dependent upon the application and the use case.

Parameter Description
UpperStack

Min Nom Max

tISR(upper stack) Maximum interrupt processing time - - 250 μs

tnISR(upper stack) Minimum time between interrupts Application dependent.1

1. Calls to the SoftDevice API trigger the upper stack interrupt.

BLE connection configuration LowerStack UpperStack CPU suspend Remaining

Connection interval 4 s
No data transfer

0.01% 0.01% 0.03% ~99%

Connection interval 7.5 ms
4 packet transfer per event

11% 27% 42% ~20%

Connection interval 100 ms
1 packet transfer per event (bidirectional)

0.4% 0.6% 0.7% ~98%
Page 40

S110 nRF51822 SoftDevice Specification v1.3

Page 41

12 BLE data throughput
The maximum data throughput limits in Table 33 apply to encrypted packet transfers. To achieve maximum
data throughput, the application must exchange data at a rate that matches on-air packet transmissions and
use the maximum data payload per packet.

 Table 33 L2CAP and GATT maximum data throughput

Protocol Role Method Maximum data throughput

L2CAP

Receive 140 kbps

Send 140 kbps

Simultaneous send and receive 130 kbps (each direction)

GATT Client

Receive Notification 120 kbps

Send Write command 120 kbps

Send Write request 10 kbps

Simultaneous receive Notification and
send Write command

100 kbps (each direction)

GATT Server

Send Notification 120 kbps

Receive Write command 110 kbps

Receive Write request 10 kbps

Simultaneous send Notification and
receive Write command

80 kbps (each direction)

S110 nRF51822 SoftDevice Specification v1.3
13 BLE power profiles
This chapter provides power profiles for MCU activity during Bluetooth low energy Radio Events
implemented in the SoftDevice. These profiles give a detailed overview of the stages of a Radio Event, the
approximate timing of stages within the event, and how to calculate the peak current at each stage using
data from the product specification. The LowerStack CPU profile (including CPU activity and CPU suspend)
during the event is shown separately. These profiles are based on events with empty packets.

13.1 Connection event

 Table 34 Connection event

Note: When using the 32.768 kHz RC oscillator, IRC32k must be used instead of IX32k.

Stage Description Current Calculations1

1. See the corresponding product specification for the symbol values.

(A) Preprocessing ION + IRTC + IX32k + ICPU,Flash

(B) Standby + XO ramp ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio Start ION + IRTC + IX32k + IX16M + ʃ (ISTART,RX)

(E) Radio RX ION + IRTC + IX32k + IX16M + IRX+ ICRYPTO

(F) Radio turn-around ION + IRTC + IX32k + IX16M + ʃ (ISTART,TX)

(G) Radio TX ION + IRTC + IX32k + IX16M + ITX,0dBM+ ICRYPTO

(H) Post-processing ION + IRTC + IX32k + ICPU,Flash

(I) Idle - connected ION + IRTC + IX32k
Page 42

S110 nRF51822 SoftDevice Specification v1.3

 Figure 16 Connection event

13.2 Advertising event

 Table 35 Advertising event

Note: IRC32k should be substituted for IX32k when using the 32.768k RCOSC.

Stage Description Current Calculation1

1. See the corresponding product specification for the symbol values.

(A) Pre-processing ION + IRTC + IX32k + ICPU,Flash

(B) Standby + XO ramp ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio start/switch ION + IRTC + IX32k + IX16M + ʃ (ISTART,TX)

(E) Radio TX ION + IRTC + IX32k + IX16M + ITX,0dBM

(F) Radio turn-around ION + IRTC + IX32k + IX16M + ʃ (ISTART,RX)

(G) Radio RX ION + IRTC + IX32k + IX16M + IRX

(H) Post-processing ION + IRTC + IX32k + ICPU,Flash

(I) Idle ION + IRTC + IX32k
Page 43

S110 nRF51822 SoftDevice Specification v1.3
 Figure 17 Advertising event
Page 44

S110 nRF51822 SoftDevice Specification v1.3
14 SoftDevice identification and revision scheme
The SoftDevices will be identified by the SoftDevice part code, a qualified IC partcode (for example,
nRF51822), and a version string.

For revisions of the SoftDevice which are production qualified, the version string consists of major, minor,
and revision numbers only, as described in Table 36.

For revisions of the SoftDevice which are not production qualified, a build number and a test qualification
level (alpha/beta) are appended to the version string.

For example: s110_nrf51822_1.2.3-4.alpha, where major = 1, minor = 2, revision = 3, build number = 4 and
test qualification level is alpha. Additional SoftDevice revision examples are given in Table 37.

 Table 36 Revision scheme

 Table 37 SoftDevice revision examples

Revision Description

Major increments Modifications to the API or the function or behavior of the implementation or part
of it have changed.

Changes as per Minor Increment may have been made.

Application code will not be compatible without some modification.

Minor increments Additional features and/or API calls are available.

Changes as per Revision Increment may have been made.

Application code may have to be modified to take advantage of new features.

Revision increments Issues have been resolved or improvements to performance implemented.

Existing application code will not require any modification.

Build number increment (if
present)

New build of non-production version.

Sequence number Description

s110_nrf51822_1.2.3-1.alpha Revision 1.2.3, first build, qualified at alpha level

s110_nrf51822_1.2.3-2.alpha Revision 1.2.3, second build, qualified at alpha level

s110_nrf51822_1.2.3-5.beta Revision 1.2.3, fifth build, qualified at beta level

s110_nrf51822_1.2.3 Revision 1.2.3, qualified at production level
Page 45

S110 nRF51822 SoftDevice Specification v1.3
 The test qualification levels are outlined in Table 38.

 Table 38 Test qualification levels

14.1 Notification of SoftDevice revision updates
When new versions of a SoftDevice become available or the qualification status of a given revision of a
SoftDevice is changed, product update notifications will be automatically forwarded, by email, to all users
who have a profile configured to receive notifications from the Nordic Semiconductor website.

The SoftDevice will be updated with additional features and/or fixed issues if needed. Supported
production versions of the SoftDevice will remain available after updates, so products do not need
requalification on release of updates if the previous version is sufficiently feature complete for your product.

Qualification Description

Alpha Development release suitable for prototype application development.
Hardware integration testing is not complete.
Known issues may not be fixed between alpha releases.
Incomplete and subject to change.

Beta Development release suitable for application development.
In addition to alpha qualification:
Hardware integration testing is complete but may not be feature complete and may
contain known issues.
Protocol implementations are tested for conformance and interoperability.

Production Qualified release suitable for product integration.
In addition to beta qualification:
Hardware integration tested over supported range of operating conditions.
Stable and complete with no known issues.
Protocol implementations conform to standards.
Page 46

	1 Introduction
	1.1 Documentation

	2 Product overview
	2.1 SoftDevice
	2.2 Multiprotocol support

	3 Bluetooth low energy protocol stack
	3.1 Profile and service support
	3.2 Bluetooth low energy features

	4 SoC library
	5 SoftDevice Manager
	6 Flash memory API
	7 Radio Notification
	8 Concurrent Multiprotocol Timeslot API
	8.1 Request types
	8.2 Request priorities
	8.3 Timeslot length
	8.4 Scheduling
	8.5 Performance considerations
	8.6 Multiprotocol timeslot API
	8.6.1 API calls
	8.6.2 Timeslot events
	8.6.3 Timeslot signals
	8.6.4 Signal handler return actions
	8.6.5 Ending a timeslot in time
	8.6.6 The signal handler runs at LowerStack priority

	8.7 Examples
	8.7.1 Complete session example
	8.7.2 Blocked timeslot example
	8.7.3 Canceled timeslot example
	8.7.4 Timeslot extension example

	9 Bootloader
	9.1 Master Boot Record (MBR)

	10 SoftDevice resource requirements
	10.1 Memory resource map and usage
	10.2 Hardware blocks and interrupt vectors
	10.3 Application signals - software interrupts
	10.4 Programmable Peripheral Interconnect (PPI)
	10.5 SVC number ranges
	10.6 External requirements

	11 Processor availability and interrupt latency
	11.1 Interrupt latency due to SoC framework
	11.2 Processor availability
	11.3 BLE peripheral performance
	11.3.1 BLE peripheral advertising
	11.3.2 BLE peripheral connection
	11.3.3 API calls
	11.3.4 CPU utilization in connection

	11.4 Performance with Flash memory API and Concurrent Multiprotocol Timeslot API

	12 BLE data throughput
	13 BLE power profiles
	13.1 Connection event
	13.2 Advertising event

	14 SoftDevice identification and revision scheme
	14.1 Notification of SoftDevice revision updates

