
2015-06-12

SoftDevice Specification
S130 SoftDevice v1.0.0

Contents

Page 2

Contents

Chapter 1: Revision history.. 5

Chapter 2: S130 SoftDevice..6

Chapter 3: Documentation... 7

Chapter 4: Product overview..8
4.1 Multiprotocol support... 8

Chapter 5: Bluetooth low energy protocol stack.. 10
5.1 Profile and service support...10
5.2 Bluetooth low energy features...12
5.3 Limitations on procedure concurrency..15

Chapter 6: System on Chip library...16

Chapter 7: SoftDevice Manager... 18

Chapter 8: SoftDevice information structure... 19

Chapter 9: Flash memory API...20

Chapter 10: Radio Notification.. 22
10.1 Radio Notification on connection events as a central..25
10.2 Radio Notification on peripheral events... 26
10.3 Radio notification with concurrent peripheral and central events..27

Chapter 11: Concurrent Multiprotocol Timeslot API.................................. 29
11.1 Request types.. 29
11.2 Request priorities... 29
11.3 Timeslot length... 30
11.4 Scheduling.. 30
11.5 Performance considerations.. 30
11.6 Multiprotocol timeslot API..30

11.6.1 API calls...31
11.6.2 Timeslot events..31
11.6.3 Timeslot signals... 31
11.6.4 Signal handler return actions...32
11.6.5 Ending a timeslot in time.. 32
11.6.6 The signal handler runs at LowerStack priority...32

Contents

Page 3

11.7 Timeslot usage examples..32
11.7.1 Complete session example... 32
11.7.2 Blocked timeslot example... 33
11.7.3 Canceled timeslot example...34
11.7.4 Timeslot extension example...35

Chapter 12: Master Boot Record and bootloader...................................... 37
12.1 Master Boot Record...37
12.2 Bootloader...37
12.3 Master Boot Record (MBR) and SoftDevice reset behavior.. 38
12.4 Master Boot Record (MBR) and SoftDevice initialization...39

Chapter 13: System on Chip resource requirements..................................40
13.1 Attribute Table size... 40
13.2 Memory resource map and usage...40

13.2.1 Memory resource requirements..41
13.3 Hardware blocks and interrupt vectors... 42
13.4 Application signals – software interrupts (SWI)..44
13.5 Programmable Peripheral Interconnect (PPI)..44
13.6 SVC number ranges...45
13.7 External requirements.. 45

Chapter 14: Multilink scheduling.. 46
14.1 Connection timing as a central...47
14.2 Scanner timing.. 48
14.3 Initiator timing...49
14.4 Advertiser (connectable and non-connectable) timing...50
14.5 Peripheral connection setup and connection timing...51
14.6 Suggested intervals and windows...52

Chapter 15: Processor availability and interrupt latency.......................... 55
15.1 Interrupt latency due to System on Chip (SoC) framework... 55
15.2 Processor availability...55

15.2.1 SoftDevice interrupt latency definitions.. 56
15.3 BLE peripheral performance.. 56

15.3.1 BLE peripheral connection.. 57
15.4 BLE central performance... 58

15.4.1 Central connection event interrupt latency..60
15.5 BLE CPU utilization.. 61
15.6 Performance with Flash memory API, Concurrent Multiprotocol Timeslot API and multiple

roles...62

Chapter 16: BLE data throughput..63

Chapter 17: BLE power profiles... 65
17.1 Advertising event... 65
17.2 Peripheral connection event..66
17.3 Scanning event... 68
17.4 Central connection event..69

Contents

Page 4

Chapter 18: SoftDevice identification and revision scheme......................71
18.1 MBR distribution and revision scheme.. 72

Chapter 19: Appendix A: SoftDevice architecture......................................73
19.1 System on Chip (SoC) library... 74
19.2 SoftDevice Manager.. 74
19.3 Protocol stack.. 75
19.4 Application Program Interface (API)... 75
19.5 Memory isolation and run time protection..75
19.6 Call stack..77
19.7 Heap.. 77
19.8 Peripheral run time protection... 78
19.9 Exception (interrupt) management with a SoftDevice.. 78
19.10 Interrupt forwarding to the application..80
19.11 Events - SoftDevice to application..81
19.12 SoftDevice enable and disable... 81
19.13 Power management... 82
19.14 Error handling... 82

Page 5

Chapter 1

Revision history
Date Version Description

June 2015 1.0 Updated to correspond to
SoftDevice S130 version 1.0.0.

July 2014 0.5 Preliminary release.

Page 6

Chapter 2

S130 SoftDevice
The S130 SoftDevice is a Bluetooth® Low Energy (BLE) central and peripheral protocol stack solution. It
supports up to three connections as a central, one connection as a peripheral, an observer, and a broadcaster
all running concurrently. The S130 SoftDevice integrates a BLE Controller and Host, and provides a full and
flexible API for building Bluetooth Smart System on Chip (SoC) solutions.

Key features Applications

• Bluetooth 4.2 compliant low energy single-
mode protocol stack suitable for Bluetooth Smart
products

• Concurrent Central, Observer, Peripheral, and
Broadcaster roles with up to:

• Three connections as a central
• One connection as a peripheral
• Observer
• Broadcaster

• Link layer
• L2CAP, ATT, and SM protocols
• GATT and GAP APIs
• GATT Client and Server

• Complementary nRF51 SDK including Bluetooth
profiles and example applications

• Master Boot Record for over-the-air device
firmware update

• Memory isolation between application and
protocol stack for robustness and security

• Thread-safe supervisor-call based API
• Asynchronous, event-driven behavior
• No RTOS dependency

• Any RTOS can be used
• No link-time dependencies

• Standard ARM® CortexTMM0 project
configuration for application development

• Support for concurrent and non-concurrent
multiprotocol operation

• Concurrent with the Bluetooth stack using
concurrent multiprotocol timeslot API

• Alternate protocol stack in application space

• Sports and fitness devices

• Sports watches
• Bike computers

• Personal Area Networks

• Health and fitness sensor and monitoring
devices

• Medical devices
• Key fobs and wrist watches

• Home automation
• Rezence wireless charging
• Remote control toys
• Computer peripherals and I/O devices

• Mice
• Keyboards
• Multi-touch trackpads

• Interactive entertainment devices

• Remote controls
• Gaming controllers

Page 7

Chapter 3

Documentation
Required reading for a comprehensive understanding of the SoftDevice includes the SoftDevice architecture,
product specification, product anomaly notifications, compatibility matrix, and Bluetooth core specification.

Below is a list of the core documentation for the SoftDevice.

Table 1: S130 SoftDevice core documentation

Documentation Description

Appendix A: SoftDevice architecture on page 73 Essential reading for understanding the resource
usage and performance related to chapters of this
document.

nRF51822 Product Specification Contains a description of the hardware, modules, and
electrical specifications specific to the nRF51822 IC.

nRF51822 PAN Contains information on anomalies related to the
nRF51822 IC.

nRF51 Series Compatibility Matrix Contains information on the compatibility between
nRF51 Integrated Circuit (IC) revisions, SoftDevices
and SoftDevice Specifications, SDKs, development
kits, documentation, and Qualified Design
Identifications (QDIDs).

Bluetooth Core Specification The Bluetooth Core Specification version 4.2, Volumes
1, 3, 4, and 6, describes Bluetooth terminology which
is used throughout the SoftDevice Specification.

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.nrf51.v1.0.0/pdflinks/51822_ps.html
http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.nrf51.v1.0.0/pdflinks/nRF51822_pan.html
http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.nrf51.v1.0.0/pdflinks/nrf51_comp_matrix.html
https://www.bluetooth.org/en-us/specification/adopted-specifications

Page 8

Chapter 4

Product overview
The SoftDevice is a precompiled and linked binary image implementing a Bluetooth 4.2 low energy protocol
stack for the nRF51 series of ICs.

See the nRF51 Series Compatibility Matrix for SoftDevice/IC compatibility information.

The Application Programming Interface (API) is a set of standard C language functions and data types that give
the application complete compiler and linker independence from the SoftDevice implementation.

The SoftDevice enables the application programmer to develop their code as a standard ARM® CortexTMM0
project without having the need to integrate with proprietary IC vendor software frameworks. This means that
any ARM® CortexTMM0-compatible toolchain can be used to develop Bluetooth low energy applications with
the SoftDevice.

Figure 1: System on Chip application with the SoftDevice

The SoftDevice can be programmed onto compatible nRF51 Series ICs during both development and
production.

4.1 Multiprotocol support
The SoftDevice supports both non-concurrent and fully concurrent multiprotocol implementations.

4 Product overview

Page 9

For non-concurrent operation, a proprietary 2.4 GHz protocol can be implemented in the application program
area and can access all hardware resources when the SoftDevice is disabled.

For concurrent multiprotocol operation, with a proprietary protocol running concurrently with the SoftDevice
protocol(s), see Concurrent Multiprotocol Timeslot API on page 29.

Page 10

Chapter 5

Bluetooth low energy protocol stack
The Bluetooth 4.2 compliant low energy Host and Controller implemented by the SoftDevice are fully qualified
with multi-role support (Central, Observer, Peripheral, and Broadcaster).

The SoftDevice allows applications to implement standard Bluetooth low energy profiles as well as proprietary
use case implementations. The API is defined above the Generic Attribute Protocol (GATT), Generic Access
Profile (GAP), and Logical Link Control and Adaptation Protocol (L2CAP).

The nRF51 Software Development Kit (SDK) complements the SoftDevice with Service and Profile
implementations. Single-mode System on Chip (SoC) applications are enabled by the full BLE protocol stack
and nRF51 series integrated circuit (IC).

Figure 2: SoftDevice stack architecture

5.1 Profile and service support
This section lists the profiles and services adopted by the Bluetooth Special Interest Group at the time of
publication of this document.

The SoftDevice supports all of these as well as additional proprietary profiles.

Table 2: Supported profiles and services

Adopted profile Adopted services

HID over GATT HID

5 Bluetooth low energy protocol stack

Page 11

Adopted profile Adopted services

Battery

Device Information

Heart Rate Heart Rate

Device Information

Proximity Link Loss

Immediate Alert

Tx Power

Blood Pressure Blood Pressure

Device Information

Health Thermometer Health Thermometer

Device Information

Glucose Glucose

Device Information

Phone Alert Status Phone Alert Status

Alert Notification Alert Notification

Time Current Time

Next DST Change

Reference Time Update

Find Me Immediate Alert

Cycling Speed and Cadence Cycling Speed and Cadence

Device Information

Running Speed and Cadence Running Speed and Cadence

Device Information

Location and Navigation Location and Navigation

Cycling Power Cycling Power

Scan Parameters Scan Parameters

Weight Scale Weight Scale

Body Composition

User Data

Device Information

Continuous Glucose Monitoring Continuous Glucose Monitoring

Bond Management

5 Bluetooth low energy protocol stack

Page 12

Adopted profile Adopted services

Device Information

Environmental Sensing Environmental Sensing

Important: Examples for selected profiles and services are available in the nRF51 SDK. See the SDK
documentation for details.

5.2 Bluetooth low energy features
The BLE protocol stack in the SoftDevice has been designed to provide an abstract but flexible interface for
application development for Bluetooth low energy devices.

GAP, GATT, SM, and L2CAP are implemented in the SoftDevice and managed through the API. The SoftDevice
implements GAP and GATT procedures and modes that are common to most profiles such as the handling of
discovery, connection, data transfer, and bonding.

The BLE API is consistent across Bluetooth role implementations where common features have the same
interface. The following tables describe the features found in the BLE protocol stack.

Table 3: API features in the BLE stack

API features Description

Interface to:

GATT / GAP

Consistency between APIs including shared data
formats.

Attribute table sizing, population and access Full flexibility to size the attribute table at application
compile time and to populate it at run time. Attribute
removal is not supported.

Asynchronous and event driven Thread-safe function and event model enforced by
the architecture.

Vendor-specific (128-bit) UUIDs for proprietary
profiles

Compact, fast and memory efficient management of
128-bit UUIDs.

Packet flow control Full application control over data buffers to ensure
maximum throughput.

Table 4: GAP features in the BLE stack

GAP features Description

Multi-role: Central, Peripheral, Observer, and Broadcaster can
run concurrently with a connection.

Multiple bond support Keys and peer information stored in application
space.

No restrictions in stack implementation.

Security Mode 1:

Levels 1, 2 & 3

Support for all levels of SM 1.

5 Bluetooth low energy protocol stack

Page 13

Table 5: GATT features in the BLE stack

GATT features Description

Full GATT Server Support for three concurrent ATT server sessions.
Includes configurable Service Changed support.

Support for authorization Enables control points.

Enables freshest data.

Enables GAP authorization.

Full GATT Client Flexible data management options for packet
transmission with either fine control or abstract
management.

Implemented GATT Sub-procedures Discover all Primary Services.

Discover Primary Service by Service UUID.

Find included Services.

Discover All Characteristics of a Service.

Discover Characteristics by UUID.

Discover All Characteristic Descriptors.

Read Characteristic Value.

Read using Characteristic UUID.

Read Long Characteristic Values.

Read Multiple Characteristic Values (Client only).

Write Without Response.

Write Characteristic Value.

Notifications.

Indications.

Read Characteristic Descriptors.

Read Long Characteristic Descriptors.

Write Characteristic Descriptors.

Write Long Characteristic Values.

Write Long Characteristic Descriptors.

Reliable Writes.

Table 6: Security Manager (SM) features in the BLE stack

Security Manager features Description

Flexible key generation and storage for reduced
memory requirements

Keys are stored directly in application memory to
avoid unnecessary copies and memory constraints.

Authenticated MITM (Man in the middle) protection Allows for per-link elevation of the encryption
security level.

5 Bluetooth low energy protocol stack

Page 14

Security Manager features Description

Pairing methods:

Just works, Passkey Entry and Out of Band

API provides the application full control of the pairing
sequences.

Table 7: Attribute Protocol (ATT) features in the BLE stack

ATT features Description

Server protocol Fast and memory efficient implementation of the ATT
server role.

Client protocol Fast and memory efficient implementation of the ATT
client role.

Max MTU size 23 bytes Up to 20 bytes of user data available per packet.

Table 8: Controller, Link Layer (LL) features in the BLE stack

Controller, Link Layer features Description

Master role

Scanner/Initiator roles

The SoftDevice supports three concurrent master
connections and an additional Scanner/Initiator
role. When the maximum number of simultaneous
connections are established, the Scanner role will
be supported for new device discovery though the
initiator is not available at that time.

Master connection parameter update

Channel map configuration Setup of channel map for all master connections
from the application.

Accepting update for the channel map for a slave
connection.

Slave role

Advertiser/broadcaster role

Supports advertiser, or one peripheral connection
and one additional broadcaster.

Connection parameter update Central role may initiate connection parameter
update. Peripheral role will accept connection
parameter update.

Encryption

RSSI Signal strength measurements during advertising,
scanning, and central and peripheral connections.

Table 9: Proprietary features in the BLE stack

Proprietary features Description

TX Power control Access for the application to change TX power
settings anytime.

Enhanced Privacy 1.1 support Synchronous and low power solution for Bluetooth
low energy enhanced privacy with hardware-
accelerated address resolution for whitelisting.

5 Bluetooth low energy protocol stack

Page 15

Proprietary features Description

Master Boot Record (MBR) for Device Firmware
Update (DFU)

Enables over-the-air SoftDevice replacement, giving
full SoftDevice update capability.

5.3 Limitations on procedure concurrency
When the SoftDevice has established multiple connections as a Central, the concurrency of protocol
procedures will have some limitations.

The Host instantiates both GATT and GAP instances for each connection, while the Security Manager (SM)
Initiator is only instantiated once for all connections. The Link Layer also has concurrent procedure limitations
that are handled inside the SoftDevice without requiring management from the application.

Table 10: Limitations on procedure concurrency

Protocol procedures Limitation with multiple connections

GATT None. All procedures can be executed in parallel.

GAP None. All procedures can be executed in parallel.
Note that some GAP procedures require LL
procedures (connection parameter update and
encryption). In this case, the GAP module will queue
the LL procedures and execute them in sequence.

SM SM procedures cannot be executed in parallel for
connections as a central. That is, each SM procedure
must run to completion before the next procedure
begins across all connections as a central. For
example sd_ble_gap_authenticate().

LL The LL Disconnect procedure has no limitations and
can be executed on any, or all, links simultaneously.

The LL connection parameter update and encryption
establishment procedure on a master link can only be
executed on one master link at a time.

Accepting connection parameter update and
encryption establishment on a slave link is always
allowed irrespective of any control procedure
running on master links.

Page 16

Chapter 6

System on Chip library
The coexistence of Application and SoftDevice with safe sharing of common System on Chip (SoC) resources is
ensured with a number of features.

Table 11: System on Chip features

Feature Description

Mutex The SoftDevice implements atomic mutex acquire
and release operations that are safe for the
application to use. Use this mutex to avoid disabling
global interrupts in the application, because
disabling global interrupts will interfere with the
SoftDevice and may lead to dropped packets or lost
connections.

NVIC Gives the application access to all NVIC features
without corrupting SoftDevice configurations.

Rand Provides random numbers from the hardware
random number generator.

Power Access to POWER block configuration while the
SoftDevice is enabled:

• Access to RESETREAS register
• Set power modes
• Configure power fail comparator
• Control RAM block power
• Use general purpose retention register
• Configure DC/DC converter state:

• DISABLED
• ENABLED

Clock Access to CLOCK block configuration while the
SoftDevice is enabled. Allows the HFCLK Crystal
Oscillator source to be requested by the application.

Wait for event Simple power management call for the application
to use to enter a sleep or idle state and wait for an
event.

PPI Configuration interface for PPI channels and groups
reserved for an application.

Concurrent Multiprotocol Timeslot API Schedule other radio protocol activity, or periods of
radio inactivity. Fo more information, see Concurrent
Multiprotocol Timeslot API on page 29.

Radio Notification Configure Radio Notification signals on ACTIVE and/
or nACTIVE. See Radio Notification on page 22.

Block Encrypt (ECB) Safe use of 128 bit AES encrypt HW accelerator.

6 System on Chip library

Page 17

Feature Description

Event API Fetch asynchronous events generated by the SoC
library.

Flash memory API Application access to flash write, erase, and protect.
Can be safely used during all protocol stack states.
See Flash memory API on page 20.

Temperature Application access to the temperature sensor.

Page 18

Chapter 7

SoftDevice Manager
The SoftDevice control API enables the Application to manage the SoftDevice on a top level.

Table 12: Features enabling the Application to manage the SoftDevice on a top level.

Feature Description

SoftDevice control API Control of SoftDevice state through enable and
disable. On enable, the low frequency clock source
can be selected between the following options:

• RC oscillator
• Crystal oscillator

Page 19

Chapter 8

SoftDevice information structure
The SoftDevice binary file contains an information structure.

The structure is illustrated in Figure 3: SoftDevice information structure on page 19. The location of the
structure, the SoftDevice size, and the firmware_id can be obtained at run time by the application using
macros defined in the nrf_sdm.h header file. Accessing this structure requires that the SoftDevice is not
read back protected. The information structure can also be accessed by parsing the binary SoftDevice file.

Figure 3: SoftDevice information structure

Page 20

Chapter 9

Flash memory API
Asynchronous flash memory operations are performed using the SoC library API and provide the application
with flash write, flash erase, and flash protect support through the SoftDevice. This interface can safely be used
during active BLE connections.

The flash memory access is scheduled in between the protocol radio events. For short connection,
advertisement or scan intervals, the time required for the flash memory access may be larger than the interval.
In this case, protocol radio events may be skipped. The flash memory access may also be delayed to minimize
the disturbance of the BLE radio protocol.

If the protocol radio events are in a certain critical state, flash memory access may get delayed for a long
period resulting in the time-out event NRF_EVT_FLASH_OPERATION_ERROR. If this happens, retry the
flash memory operation. Examples of typical critical phases of protocol radio events include: connection setup,
connection update, disconnection, and just before supervision time-out.

The probability of successfully accessing the flash memory is higher when there is little BLE activity. For
example, with long connection intervals there will be a higher probability of accessing flash memory
successfully. Use the guidelines in Table 13: Behavior with BLE traffic and concurrent flash write/erase on page
20 to improve the probability of flash operation success.

Important:

Flash page erase takes approximately 22 ms and a 256 byte flash write takes approximately 13 ms.

Table 13: Behavior with BLE traffic and concurrent flash write/erase

BLE activity Flash write/erase

High Duty cycle directed advertising Does not allow flash operation while advertising is
active (maximum 1.28 seconds). In this case, retrying
flash operation will only succeed after the advertising
activity has finished.

3 connections as a central, 1 connection as a
peripheral, LE advertiser, and a scanner, all running
concurrently.

All active connections fulfill the following criteria:

Supervision time-out > 14 x connection interval

Low to medium probability of flash operation success

Probability of success increases with increase in
connection interval and advertiser interval and
decreases with increase in scan window.

3 connections as a central

Scanner

All active connections fulfill the following criteria:

Supervision time-out > 6 x connection interval

Low to medium probability of flash operation
success.

Probability of success increases with increase in
connection interval and advertiser interval and
decreases with increase in scan window.

3 connections as a central

1 connection as a peripheral

All active connections fulfill the following criteria:

Supervision time-out > 6 x connection interval

Connection interval ≥ 50 ms

High probability of flash write success.

Low to medium probability of flash erase success.
(high probability if the connection interval is > 60 ms)

9 Flash memory API

Page 21

BLE activity Flash write/erase

Advertisement interval ≥ 50 ms

All central connections have an equal connection
interval

3 connections as a central

All active connections fulfill the following criteria:

Supervision time-out > 6 x connection interval

Connection interval ≥ 40 ms

All connections have an equal connection interval

High probability of flash operation success.

1 connection as a peripheral

All active connections fulfill the following criteria:

Supervision time-out > 6 x connection interval

High probability of flash operation success.

Connectable Undirected Advertising

Nonconnectable Advertising

Scannable Advertising

Connectable Low Duty Cycle Directed Advertising

High probability of flash operation success.

No BLE activity Flash operation will always succeed.

Page 22

Chapter 10

Radio Notification
Radio Notification is a configurable feature that enables ACTIVE and INACTIVE (nACTIVE) signals from the
SoftDevice to the application notifying when the radio is in use.

The signal is sent using software interrupt, as specified in Table 27: Allocation of software interrupt vectors to
SoftDevice signals on page 44.

In order to make sure that the Radio Notification signals behave in a consistent way, Radio Notification shall
always be configured when the SoftDevice is in an idle state with no protocol stack or other SoftDevice
activity in progress. It is therefore recommended to configure the Radio Notification signals directly after the
SoftDevice has been enabled.

The ACTIVE signal, if enabled, is sent before the Radio Event starts. The nACTIVE signal is sent at the end of the
Radio Event. These signals can be used by the application programmer to synchronize application logic with
radio activity. For example, the ACTIVE signal can be used to shut off external devices to manage peak current
drawn during periods when the radio is on, or to trigger sensor data collection for transmission in the Radio
Event.

Because both ACTIVE and nACTIVE use the same software interrupt, it is up to the application to manage
them. If both ACTIVE and nACTIVE are configured ON by the application, there will always be an ACTIVE signal
before an nACTIVE signal.

For an explanation of the notation used in this section, see Table 14: Radio Notification figure labels on page
23.

When there is sufficient time between radio events, each radio event will have both an ACTIVE signal and an
nACTIVE signal. This is the case when tGAP > tndist. Figure 4: Two radio events with ACTIVE and nACTIVE signals
on page 22 shows an example of this for two radio events. The figure also shows where the ACTIVE and
nACTIVE signals will be placed.

If tGAP < tndist, there is no sufficient time to have Radio Notification signals between the radio events, and the
signals will be skipped. There will still be an ACTIVE signal before the first event, and an nACTIVE signal after
the last event. This is shown in Figure 5: Two radio events where tGAP is too small and the notification signal
will not be available between the events on page 23.

Figure 4: Two radio events with ACTIVE and nACTIVE signals

10 Radio Notification

Page 23

Figure 5: Two radio events where tGAP is too small and the notification signal will not be available
between the events

Table 14: Radio Notification figure labels

Label Description Notes

ACTIVE The ACTIVE signal prior to a Radio
Event.

nACTIVE The nACTIVE signal after a Radio
Event.

Because both ACTIVE and nACTIVE
use the same software interrupt,
it is up to the application to
manage them. If both ACTIVE and
nACTIVE are configured ON by the
application, there will always be an
ACTIVE signal before an nACTIVE
signal.

P CPU processing in the lower stack
interrupt between ACTIVE and RX.

The CPU processing may occur
anytime, up to tprep before RX.

RX Reception of packet.

TX Transmission of packet.

tevent The time used in a Radio Event.

tgap The time between the end of
one Radio Event and the start of
another.

tndist The notification distance - the time
between ACTIVE and first RX/TX in
a Radio Event.

This time is configurable by the
application developer.

tprep The time before first RX/TX to
prepare and configure the radio.

The application will be interrupted
by the LowerStack during tprep.

Important: All packet
data to send in an event
should be sent to the stack
tprep before the Radio
starts.

tP Time used for preprocessing
before the Radio Event.

tinterval Time between Radio Events as per
the protocol.

10 Radio Notification

Page 24

Label Description Notes

tEEO Time between central role Radio
Events (Event-to-Event Offset).

The time between the start
of adjacent connections, and
between the last connection
and the scanner. Some or all
connections and/or the scanner
may be idle.

Table 15: BLE Radio Notification timing ranges

Value Range (μs)

tndist 800, 1740, 2680, 3620, 4560, 5500 (Configured by the
application)

tevent 2750 to 5500 - Undirected and scannable advertising,
0 to 31 byte payload, 3 channels

2150 to 2950 - Non-connectable advertising, 0 to 31
byte payload, 3 channels

1.28 seconds - Directed advertising, 3 channels

1000 to 3500 Slave - 1 to 3 packets RX and TX
unencrypted data when connected

1000 to 3700 Slave - 1 to 3 packets RX and TX
encrypted data when connected

2500 to 10.24 seconds – Scanner running. Depends
on scan window.

1200 to 1690 Master - 1 packets RX and TX
unencrypted data when connected

1200 to 1760 Master - 1 packets RX and TX encrypted
data when connected

tprep 165 to 1550

tP ≥ 150

tEEO 2000 to 2250

Using the numbers from Table 15: BLE Radio Notification timing ranges on page 24, the amount of CPU
time available between the ACTIVE signal and a Radio Event is:

tndist – tP

The following equation shows the amount of time before stack prepare interrupt after ACTIVE signal. Data
packets must be transferred to the stack using the API within this time from the ACTIVE signal if they are to be
sent in the next Radio Event.

tndist – tprep(maximum)

Important: tprep may be greater than tndist when tndist = 800. If time is required to handle packets or
manage peripherals before interrupts are generated by the stack, tndist should be set greater than 1550.

10 Radio Notification

Page 25

10.1 Radio Notification on connection events as a central
This section illustrates the radio Notification signal in relation to different combinations of active links and
scanning events.

See Table 14: Radio Notification figure labels on page 23 for a description of the notations used in text and
figures and Multilink scheduling on page 46 to understand the scheduling of roles.

To ensure the notification signal is available to the application at the configured time when a single link is
established as a central, the following rule must be followed:

tndist + tEEO < tinterval

Figure 6: BLE Radio Notification signal in relation to 3 active links

To ensure the notification signal is available to the application at the configured time when 3 links are
established as a central, the following rule must be followed:

tndist + 3 x tEEO < tinterval

Figure 7: BLE Radio Notification signal when the number of active links as a central is 2

To ensure the notification signal is available to the application in the gap left by inactive links as a central,
the gap should be greater than tndist. This can be expressed as (where ninactive is the number of consecutive
inactive links as a central):

ninactive x tEEO > tndist

For example, the case shown in Figure 5 where link-1 is not connected, a gap of tEEO exists between two links
as a central, so active signal will come if:

tEEO > tndist

10 Radio Notification

Page 26

Figure 8: BLE Radio Notification signal in relation to 3 active connections as a central and running
scanner

To ensure the notification signal is available to the application at the configured time with 3 links as a central
established and a scanner started, the following rule must be followed:

tndist + 4x tEEO + Scan_window < tinterval

10.2 Radio Notification on peripheral events
For the peripheral role, many packets can be sent and received in one Radio Event.

Radio Notification events will be as shown in Figure 9: BLE Radio Notification, multiple packet transfers on
page 26.

Figure 9: BLE Radio Notification, multiple packet transfers

To ensure the notification signal is available to the application at the configured time when a single slave
link is established, the SoftDevice enforces the following rule (with one exception, see Table 16: Maximum
peripheral packet transfer per BLE Radio Event for given combinations of tndist and tinterval on page 27):

tndist + tevent < tinterval

The stack will limit the length of a Radio Event (tevent), thereby reducing the maximum packets exchanged,
to accommodate the selected tndist. Figure 10: Consecutive Radio Events with BLE Radio Notification on page
27 shows consecutive Radio Events with Radio Notification and illustrates the limitation in tevent which may
be required to ensure tndist is preserved.

10 Radio Notification

Page 27

Figure 10: Consecutive Radio Events with BLE Radio Notification

Table 16: Maximum peripheral packet transfer per BLE Radio Event for given combinations of tndist and
tinterval on page 27 shows the limitation on the maximum number of full length packets which can be
transferred per Radio Event given a tndist and tinterval combination.

Table 16: Maximum peripheral packet transfer per BLE Radio Event for given combinations of tndist and
tinterval

tintervaltndist

7.5 ms 10 ms ≥ 15 ms

800 3 3 3

1740 3 3 3

2680 3 3 3

3620 3 3 3

4560 2 3 3

5500 01 3 3

10.3 Radio notification with concurrent peripheral and central events
A link as a peripheral can be placed at any time relative to links as a central. Depending on how close the link
as a peripheral is to the links as a central, the notification signal might not be available to the application.

Figure 11: Example: the gap between the links as a central and the peripheral is too small to trigger the
notification signal on page 28 shows an example where the gap between the links as a central and the
peripheral is too small to trigger the notification signal.

1 Radio notifications may be suppressed with the longest
tndist combined with a 7.5 ms connection interval.

10 Radio Notification

Page 28

Figure 11: Example: the gap between the links as a central and the peripheral is too small to trigger the
notification signal

If the following condition is met

tGAP > tndist

the notification signal will come, as illustrated below.

Figure 12: Example: the gap between the links as a central and the peripheral is sufficient to trigger the
notification signal

Page 29

Chapter 11

Concurrent Multiprotocol Timeslot
API
The Multiprotocol Timeslot API allows an application developer to safely schedule 2.4 GHz proprietary radio
usage while the SoftDevice protocol stack is in use by the device.

This allows the nRF51 device to be part of a network using the SoftDevice protocol stack and an alternative
network of wireless devices at the same time.

The Timeslot feature gives the application access to the radio and other restricted peripherals, which it
does by queueing the application's use of these peripherals with those of the SoftDevice. Using this feature,
the application can run other radio protocols (third party custom or proprietary protocols running from
application space) concurrently with the internal protocol stack(s) of the SoftDevice. It can also be used to
suppress SoftDevice radio activity and to reserve guaranteed time for application activities with hard timing
requirements, which cannot be met by using the SoC Radio Notifications.

The Timeslot feature is part of the SoC library. The feature works by having the SoftDevice time-multiplex
access to peripherals between the application and itself. Through the SoC API, the application can open a
Timeslot session and request timeslots. When a timeslot is granted, the application has exclusive and real-time
access to the normally blocked RADIO, TIMER0, CCM, AAR, and PPI (channels 14 – 15) peripherals and can use
these freely for the length of the timeslot, see Table 25: Hardware access type definitions on page 42 and
Table 26: Peripheral protection and usage by SoftDevice on page 42.

11.1 Request types
There are two types of Timeslot requests.

Timeslots may be requested as earliest possible, in which case the timeslot occurs at the first available
opportunity. In the request, the application can limit how far into the future the timeslot may be placed.

Important: The first request in a session must always be earliest possible to create the timing reference
point for later timeslots.

Timeslots may also be requested at a given time. In this case, the application specifies in the request when the
timeslot should start and the time is measured from the start of the previous timeslot.

The application may also request to extend an ongoing timeslot. Extension requests may be repeated,
prolonging the timeslot even further.

Timeslots requested as earliest possible are useful for single timeslots and for non-periodic or non-timed
activity. Timeslots requested at a given time relative to the previous timeslot are useful for periodic and timed
activities; for example, a periodic proprietary radio protocol. Timeslot extension may be used to secure as
much continuous radio time as possible for the application; for example, running an “always on” radio listener.

11.2 Request priorities
Timeslots can be requested at either high or normal priority, indicating how important it is for the application
to access the specified peripherals.

Using normal priority should be considered best practice to minimize the influence of the use of the
Multiprotocol Timeslot API on other activities. The high priority should only be used when required, such as for
running a radio protocol with certain timing requirements that are not met using normal priority.

11 Concurrent Multiprotocol Timeslot API

Page 30

11.3 Timeslot length
A timeslot is requested at a given length, but may be extended.

The length of the timeslot is specified by the application in the request and ranges from 100 μs to 100 ms.
Longer continuous timeslots can be achieved by requesting to extend the current timeslot. Successive
extensions will give a timeslot as long as possible within the limits set by other SoftDevice activities, up to a
maximum of 128 s.

11.4 Scheduling
Timeslots requested by the application are scheduled within the SoftDevice along with the SoftDevice
protocol and the Flash API activities.

Whether a timeslot request is granted and access to the peripherals is given is determined by the following
factors: The time the request is made, the time the timeslot is wanted, the priority of the request, and the
length of the requested timeslot. If the requested timeslot does not collide with other activities, the request
will be granted and the timeslot scheduled. If the requested timeslot collides with an already scheduled
activity with equal or higher priority, the request will be blocked. If a later arriving activity of higher priority
causes a collision, the request will be canceled and the scheduled timeslot revoked.

However, a timeslot that has already started cannot be interrupted or canceled. Timeslots requested at
high priority will cancel other activities scheduled at lower priorities in case of a collision. Requests for short
timeslots have a higher probability of succeeding than requests for longer timeslots because shorter timeslots
are easier to fit into the schedule.

Important: Radio Notification signals behave the same way for timeslots requested through the
Multiprotocol Timeslot interface as for SoftDevice internal activities. See section Radio Notification
on page 22 for more information. If Radio Notifications are enabled, Multiprotocol Timeslots will be
notified.

11.5 Performance considerations
Since the Multiprotocol Timeslot API shares core peripherals with the SoftDevice, and are scheduled along
with other SoftDevice activities, use of the Timeslot feature may influence SoftDevice performance.

Therefore the application configuration of the SoftDevice protocol should be considered when using the
Multiprotocol Timeslot API.

In general, all timeslot requests should use the lowest priority to ensure that interruptions to other activity is
minimized. In addition, timeslots should be kept as short as possible in order to minimize the impact on the
overall performance of the device. Similarly, requesting a shorter timeslot and then extending it gives more
flexibility to schedule other activities than requesting a longer timeslot.

11.6 Multiprotocol timeslot API
This section describes the calls, events, signals, and return actions of the Multiprotocol timeslot API.

A Timeslot session is opened and closed using API calls. Within a session, there is an API call to request
timeslots. For communication back to the application the feature will generate events, which are handled by
the normal application event handler, and signals, which must be handled by a callback function (the signal
handler) provided by the application. The signal handler can also return actions to the SoftDevice. Within a
timeslot, only the signal handler is used.

Important: The API calls, events, and signals are only given by their full names in the tables where
they are listed the first time. Elsewhere, only the last part of the name is used.

11 Concurrent Multiprotocol Timeslot API

Page 31

11.6.1 API calls
These are the API calls defined for the S130 SoftDevice:

Table 17: API calls

API call Description

sd_radio_session_open() Open a timeslot session.

sd_radio_session_close() Close a timeslot session.

sd_radio_request() Request a timeslot.

11.6.2 Timeslot events
Events come from the SoftDevice scheduler and are used for timeslot session management.

Events are received in the application event handler callback function, which will typically be run in App(L)
priority, see BLE peripheral performance on page 56. The following events are defined:

Table 18: Timeslot events

Event Description

NRF_EVT_RADIO_SESSION_IDLE Session status: The current timeslot session has no
remaining scheduled timeslots.

NRF_EVT_RADIO_SESSION_CLOSED Session status: The timeslot session is closed and all
acquired resources are released.

NRF_EVT_RADIO_BLOCKED Timeslot status: The last requested timeslot could
not be scheduled, due to a collision with already
scheduled activity or for other reasons.

NRF_EVT_RADIO_CANCELED Timeslot status: The scheduled timeslot was
preempted by higher priority activity.

RF_EVT_RADIO_SIGNAL_
CALLBACK_INVALID_RETURN

Signal handler: The last signal hander return value
contained invalid parameters.

11.6.3 Timeslot signals
Signals come from the peripherals and arrive within a timeslot.

Signals are received in a signal handler callback function that the application must provide. The signal handler
runs in LowerStack priority, which is the highest priority in the system, see section Processor availability on
page 55.

Table 19: Timeslot signals

Signal Description

NRF_RADIO_CALLBACK_SIGNAL_ TYPE_START Start of the timeslot. The application now has
exclusive access to the peripherals for the full length
of the timeslot.

NRF_RADIO_CALLBACK_SIGNAL_ TYPE_RADIO Radio interrupt, for more information, see chapter 2.4
GHz radio (RADIO) in the nRF51 Reference Manual.

NRF_RADIO_CALLBACK_SIGNAL_ TYPE_TIMER0 Timer interrupt, for more information, see chapter
Timer/counter (TIMER) in the nRF51 Reference
Manual.

11 Concurrent Multiprotocol Timeslot API

Page 32

Signal Description

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_EXTEND_SUCCEEDED

The latest extend action succeeded.

NRF_RADIO_CALLBACK_SIGNAL_
TYPE_EXTEND_FAILED

The latest extend action failed.

11.6.4 Signal handler return actions
The return value from the application signal handler to the SoftDevice contains an action.

Table 20: Signal handler action return values

Signal Description

NRF_RADIO_SIGNAL_CALLBACK_ ACTION_NONE The timeslot processing is not complete. The
SoftDevice will take no action.

NRF_RADIO_SIGNAL_CALLBACK_ ACTION_END The current timeslot has ended. The SoftDevice can
now resume other activities

NRF_RADIO_SIGNAL_CALLBACK_
ACTION_REQUEST_AND_END

The current timeslot has ended. The SoftDevice is
requested to schedule a new timeslot, after which it
can resume other activities.

NRF_RADIO_SIGNAL_CALLBACK_ ACTION_EXTEND The SoftDevice is requested to extend the ongoing
timeslot.

11.6.5 Ending a timeslot in time
The application is responsible for keeping track of timing within the timeslot and ensuring that the
application’s use of the peripherals does not last for longer than the granted timeslot.

For these purposes, the application is granted access to the TIMER0 peripheral for the length of the timeslot.
This timer is started from zero by the SoftDevice at the start of the timeslot, and is configured to run at 1 MHz.
The recommended practice is to set up a timer interrupt that expires before the timeslot expires, with enough
time left of the timeslot to do any clean-up actions before the timeslot ends. Such a timer interrupt can also be
used to request an extension of the timeslot, but there must still be enough time to clean up if the extension is
not granted.

11.6.6 The signal handler runs at LowerStack priority
The signal handler runs at LowerStack priority, which is the highest priority. Therefore, it cannot be interrupted
by any other activity.

As for the App(H) interrupt, SVC calls are not available in the signal handler. It is a requirement that processing
in the signal handler does not exceed the granted time of the timeslot. If it does, the behavior of the
SoftDevice is undefined and the SoftDevice may malfunction.

The signal handler may be called several times during a timeslot. It is recommended to use the signal handler
only for the real time signal handling. When a signal has been handled, exit the signal handler to wait for
the next signal. Processing other than signal handling should be run at lower priorities, outside of the signal
handler.

11.7 Timeslot usage examples
Several timeslot usage examples are provided with descriptions of the sequence of events within them.

11.7.1 Complete session example
This section describes a complete timeslot session.

11 Concurrent Multiprotocol Timeslot API

Page 33

Figure 13: Complete session example on page 33 shows a complete timeslot session. In this case, only
timeslot requests from the application are being scheduled, there is no SoftDevice activity.

At start, the application calls the API to open a session and to request a first timeslot (which must be of type
earliest). The SoftDevice schedules the timeslot. At the start of the timeslot, the SoftDevice calls the application
signal hander with the START signal. After this, the application is in control and has access to the peripherals.
The application will then typically set up TIMER0 to expire before the end of the timeslot, to get a signal that
the timeslot is about to end. In the last signal in the timeslot, the application uses the signal handler return
action to request a new timeslot 100 ms after the first.

The following timeslots (the middle timeslot in the figure below) are all similar. The signal handler is called
with the START signal at the start of the timeslot. The application then has control, but must arrange for a
signal to come towards the end of the timeslot. As the return value for the last signal in the timeslot, the signal
handler requests a new timeslot using the REQUEST_AND_END action.

Eventually, the application does not require the radio any more. So, at the last signal in the last timeslot, the
application returns END from the signal handler. The SoftDevice then sends an IDLE event to the application
event handler. The application calls session_close, and the SoftDevice sends the CLOSED event. The session
has now ended.

Figure 13: Complete session example

11.7.2 Blocked timeslot example
Situations may occur where a new timeslot cannot be scheduled as requested because of a collision with an
already scheduled SoftDevice activity.

Figure 14: Blocked timeslot example on page 34 shows a situation in the middle of a session where a
requested timeslot cannot be scheduled. At the end of the first timeslot illustrated here, the application
signal handler returns a REQUEST_AND_END action to request a new timeslot. The new timeslot cannot be
scheduled as requested, because of a collision with an already scheduled SoftDevice activity. The application
is notified about this by a BLOCKED event to the application event handler. The application then makes a new
request further out in time. This request succeeds (it does not collide with anything), and a new timeslot is
scheduled.

11 Concurrent Multiprotocol Timeslot API

Page 34

Figure 14: Blocked timeslot example

11.7.3 Canceled timeslot example
Situations may occur in the middle of a session where a requested and scheduled application timeslot is being
revoked.

Figure 15: Canceled timeslot example on page 35 shows a situation in the middle of a session where a
requested and scheduled application timeslot is being revoked. The upper part of the figure shows that the
application has ended a timeslot by returning the REQUEST_AND_END action, and the new timeslot has been
scheduled. The new scheduled timeslot has not been started yet, it is still some time into the future. The lower
part of the figure shows the situation some time later.

In the meantime, time for a SoftDevice activity of higher priority has been requested internally in the
SoftDevice, at a time which collides with the scheduled application timeslot. To accommodate the higher
priority request, the application timeslot has been removed from the schedule, and the higher priority
SoftDevice activity scheduled instead. The application is notified about this by a CANCELED event to the
application event handler. The application then makes a new request further out in time. This request
succeeds (it does not collide with anything), and a new timeslot is scheduled.

11 Concurrent Multiprotocol Timeslot API

Page 35

Figure 15: Canceled timeslot example

11.7.4 Timeslot extension example
An application can use timeslot extension to create long continuous timeslots that will give the application as
much radio time as possible while disturbing the SoftDevice activities as little as possible.

In the first slot in Figure 16: Timeslot extension example on page 36, the application uses the signal handler
return action to request an extension of the timeslot. The extension is granted, and the timeslot is seamlessly
prolonged. The second attempt at extending the timeslot fails, as a further extension would cause a collision
with a SoftDevice activity that has been scheduled. Therefore the application does a new request, of type
earliest. This results in a new radio timeslot being scheduled immediately after the SoftDevice activity. This
new timeslot can be extended a number of times.

11 Concurrent Multiprotocol Timeslot API

Page 36

Figure 16: Timeslot extension example

Page 37

Chapter 12

Master Boot Record and bootloader
The SoftDevice supports the use of a bootloader. A bootloader may be used to update the firmware on the iC.

The SoftDevice also contains a Master Boot Record (MBR). The MBR is necessary in order for the bootloader to
update the SoftDevice, or to update the bootloader itself. The MBR is a required component in the system. The
inclusion of a bootloader is optional.

12.1 Master Boot Record
The Master Boot Record (MBR) module occupies a defined region in flash memory where the System Vector
table resides.

All exceptions (reset, hard fault, interrupts, SVC) are processed first by the MBR and then forwarded to
appropriate handlers (for example bootloader or SoftDevice). The main feature of the MBR is to provide an
interface to allow in-system updates of the SoftDevice and bootloader firmware.

The MBR is not updated between versions of the SoftDevice, meaning that during an update process, the MBR
is never erased. The MBR ensures safe restart of any ongoing update process if an unexpected reset occurs.

12.2 Bootloader
A bootloader may be used to handle in-system update procedures.

The bootloader has access to the full SoftDevice API and can be implemented just as any application that
uses a SoftDevice. In particular, the bootloader can make use of the SoftDevice API to enable protocol stack
interaction.

The bootloader is supported in the SoftDevice architecture by using a configurable base address
for the bootloader in application code space. The base address is configured by setting the
UICR.BOOTLOADERADDR register. The bootloader is responsible for determining the start address of the
application. It uses sd_softdevice_vector_table_base_set(uint32_t address) to tell the
SoftDevice where the application starts.

The bootloader is also responsible for keeping track of, and verifying the SoftDevice. If an unexpected reset
occurs during an update of the SoftDevice, it is the responsibility of the bootloader to detect this and recover.

12 Master Boot Record and bootloader

Page 38

Figure 17: MBR, SoftDevice and bootloader architecture

12.3 Master Boot Record (MBR) and SoftDevice reset behavior
Upon system reset, the MBR Reset Handler is run as specified by the System Vector table.

The MBR and SoftDevice reset behavior is as follows:

• If an in-system bootloader update procedure is in progress:

• Then in-system update procedure is run to completion.
• System is reset.

• Else if SD_MBR_COMMAND_VECTOR_TABLE_BASE_SET has been called previously:

• Forward interrupts to the parameter given.
• Run from Reset Handler (defined in vector table at parameter given).

• Else if a bootloader is present:

• Forward interrupts to the bootloader.
• Run Bootloader Reset Handler (defined in bootloader vector table at BOOTLOADERADDR).

• Else if a SoftDevice is present:

• Forward interrupts to SoftDevice.
• Run SoftDevice Reset Handler (defined in SoftDevice vector table at 0x00001000).
• In this case, APP_CODE_BASE is hardcoded inside the SoftDevice.
• SoftDevice run Application Reset Handler (defined in application vector table at APP_CODE_BASE).

• Else system startup error:

• Sleep forever.

12 Master Boot Record and bootloader

Page 39

12.4 Master Boot Record (MBR) and SoftDevice initialization
The SoftDevice can be enabled by the bootloader.

The SoftDevice can be enabled by the bootloader in the following in this order:

1. Issue a command for MBR to forward interrupts to the SoftDevice using sd_mbr_command() with
SD_MBR_COMMAND_INIT_SD.

2. Issue a command for the SoftDevice to forward interrupts to the bootloader using
sd_softdevice_vector_table_base_set(uint32_t address) with BOOTLOADERADDR as
parameter.

3. Enable the SoftDevice using sd_softdevice_enable().

For a bootloader to transfer execution from itself to the application, you can do the following:

1. If interrupts have not been forwarded to SoftDevice, issue a command for MBR to forward interrupts to
SoftDevice using sd_mbr_command() with SD_MBR_COMMAND_INIT_SD.

2. Ensure that the SoftDevice is disabled using sd_softdevice_disable().
3. Issue a command for the SoftDevice to forward interrupts to the application using

sd_softdevice_vector_table_base_set(uint32_t address) with APP_CODE_BASE as a
parameter.

4. Branch to the application's reset handler after reading the handler from the Application Vector Table.

Page 40

Chapter 13

System on Chip resource
requirements
This section describes how the MBR and SoftDevice use resources. The SoftDevice requirements are shown
both when enabled and disabled.

The SoftDevice and MBR are designed to be installed on a System on Chip (SoC) in the lower part of the code
memory space. After a reset, the MBR will use some RAM to store state information. When the SoftDevice is
enabled, it uses resources on the IC including RAM and hardware peripherals like the radio.

13.1 Attribute Table size
The size of the Attribute Table can be configured through the SoftDevice API when initializing the Bluetooth
low energy stack.

The amount of RAM reserved by the SoftDevice, and thereby the amount of RAM available for the application,
is dependent upon this configuration.

The Attribute Table size (ATTR_TAB_SIZE) has a default value of 0x600 bytes.

Applications that require an Attribute Table smaller or bigger than the default one can choose to either reduce
or increase the Attribute table size. The amount of RAM reserved by the SoftDevice, and the start address for
the application RAM (APP_RAM_BASE) will then change accordingly. The application linker configuration must
be adapted to reflect the changed SoftDevice RAM requirement.

For more information on how to configure the Attribute Table size, refer to the SoftDevice API.

13.2 Memory resource map and usage
The memory map for program memory and RAM at run time with the SoftDevice enabled is illustrated in this
section.

Memory resource requirements, both when the SoftDevice is enabled and disabled, are shown in section
Memory resource requirements on page 41.

Important: The definitions of Region 0 (R0) and Region 1 (R1) are valid only when the CLENR0 and
RLENR0 registers are optionally programmed to enable memory protection. See the MPU chapter in
the nRF51Reference Manual for more details.

13 System on Chip resource requirements

Page 41

Figure 18: Memory resource map

13.2.1 Memory resource requirements
Listed below are the memory resource requirements both when the S130 SoftDevice is enabled and disabled.

Table 21: S130 Memory resource requirements for flash

Flash S130 Enabled S130 Disabled

SoftDevice 108 kB2 108 kB

MBR 4 kB 4 kB

APP_CODE_BASE 0x0001C000 0x0001C000

Table 22: S130 Memory resource requirements for RAM

RAM S130 Enabled S130 Disabled

SoftDevice 0x2200 - 4 + ATTR_TAB_SIZE

Default: 10236 (0x2200 - 4 + 0x600)

Minimum: 8916 (0x2200 - 4 + 216)

4 bytes

MBR 4 bytes 4 bytes

APP_RAM_BASE 0x20002200 + ATTR_TAB_SIZE3

Default: 0x20002800 (0x20002200
+ 0x600)

Minimum: 0x200022D8
(0x20002200 + 0xD8)

0x20000008

2 1 kB = 1024 bytes
3 See section Attribute Table size on page 40.

13 System on Chip resource requirements

Page 42

Table 23: S130 Memory resource requirements for call stack

Call stack4 S130 Enabled S130 Disabled

Maximum usage 1536 bytes (0x600) 0 bytes

Table 24: S130 Memory resource requirements for heap

Heap S130 Enabled S130 Disabled

Maximum allocated bytes 0 bytes 0 bytes

13.3 Hardware blocks and interrupt vectors
SoftDevice access types are used to indicate the availability of hardware blocks to the application. The access
the application varies per hardware block, both when the SoftDevice is enabled and disabled.

Table 25: Hardware access type definitions

Access type Definition

Restricted Used by the SoftDevice and outside the application
sandbox.

The application has limited access through the
SoftDevice API.

Blocked Used by the SoftDevice and outside the application
sandbox.

The application has no access.

Open Not used by the SoftDevice.

The application has full access.

Table 26: Peripheral protection and usage by SoftDevice

ID Base address Instance Access

SoftDevice
enabled

Access

SoftDevice
disabled

0 0x40000000 MPU Restricted Open

0 0x40000000 POWER Restricted Open

0 0x40000000 CLOCK Restricted Open

1 0x40001000 RADIO Blocked Open

2 0x40002000 UART0 Open Open

3 0x40003000 SPI0 / TWI0 Open Open

4 0x40004000 SPI1/TW1/SPIS1 Open Open

...

6 0x40006000 GPIOTE Open Open

13 System on Chip resource requirements

Page 43

ID Base address Instance Access

SoftDevice
enabled

Access

SoftDevice
disabled

7 0x40007000 ADC Open Open

8 0x40008000 TIMER0 Blocked5 Open

9 0x40009000 TIMER1 Open Open

10 0x4000A000 TIMER2 Open Open

11 0x4000B000 RTC0 Blocked Open

12 0x4000C000 TEMP Restricted Open

13 0x4000D000 RNG Restricted Open

14 0x4000E000 ECB Restricted Open

15 0x4000F000 CCM Blocked6 Open

15 0x4000F000 AAR Blocked7 Open

16 0x40010000 WDT Open Open

17 0x40011000 RTC1 Open Open

18 0x40012000 QDEC Open Open

19 0x40013000 LPCOMP Open Open

20 0x40014000 Software interrupt Open Open

21 0x40015000 Radio Notification Restricted8 Open

22 0x40016000 SoC Events Blocked Open

23 0x40017000 Software interrupt Blocked Open

24 0x40018000 Software interrupt Blocked Open

25 0x40019000 Software interrupt Blocked Open

...

30 0x4001E000 NVMC Restricted Open

31 0x4001F000 PPI Open9 Open

NA 0x50000000 GPIO P0 Open Open

5 Available to the application in Multiprotocol Timeslot API
timeslots, see Concurrent Multiprotocol Timeslot API on page 29.

6 Available to the application in Multiprotocol Timeslot API
timeslots, see Concurrent Multiprotocol Timeslot API on page 29.

7 Available to the application in Multiprotocol Timeslot API
timeslots, see Concurrent Multiprotocol Timeslot API on page 29.

8 Blocked only when radio notification signal is enabled. See Application signals
– software interrupts (SWI) on page 44 for software interrupt allocation.

9 See section Programmable Peripheral Interconnect (PPI) on page
44 for limitations on the use of PPI when the SoftDevice is enabled.

13 System on Chip resource requirements

Page 44

ID Base address Instance Access

SoftDevice
enabled

Access

SoftDevice
disabled

NA 0xE000E100 NVIC Restricted10 Open

13.4 Application signals – software interrupts (SWI)
Software interrupts are used by the SoftDevice to signal events to the application.

Table 27: Allocation of software interrupt vectors to SoftDevice signals

SWI Peripheral ID SoftDevice Signal

0 20 Unused by the SoftDevice and
available to the application.

1 21 Radio Notification - optionally
configured through API.

2 22 SoftDevice Event Notification.

3 23 Reserved.

4 24 LowerStack processing - not user
configurable.

5 25 UpperStack signaling - not user
configurable.

13.5 Programmable Peripheral Interconnect (PPI)
PPI may be configured using the PPI API in the SoC library.

This API is available both when the SoftDevice is disabled and when it is enabled. It is also possible to
configure the PPI using the Cortex Microcontroller Software Interface Standard (CMSIS) directly when the
SoftDevice is disabled.

When the SoftDevice is disabled, all PPI channels and groups are available to the application. When the
SoftDevice is enabled, some PPI channels and groups, as described in the table below, are in use by the
SoftDevice.

When the SoftDevice is enabled, the application program must not change the configuration of PPI channels
or groups used by the SoftDevice. Failing to comply with this will cause the SoftDevice to not operate
properly.

Table 28: Assigning PPI channels between the application and SoftDevice

PPI channel allocation SoftDevice enabled SoftDevice disabled

Application Channels 0 - 13 Channels 0 - 15

SoftDevice Channels 14 - 1511 -

10 Not protected. For robust system function, the application program must comply with
the restriction and use the NVIC API for configuration when the SoftDevice is enabled.

11 Available to the application in Multiprotocol Timeslot API timeslots, see Concurrent Multiprotocol
Timeslot API on page 29.

13 System on Chip resource requirements

Page 45

Table 29: Assigning preprogrammed channels between the application and SoftDevice

PPI channel allocation SoftDevice enabled SoftDevice disabled

Application - Channels 20 - 31

SoftDevice Channels 20 - 31 -

Table 30: Assigning PPI groups between the application and SoftDevice

PPI channel allocation SoftDevice enabled SoftDevice disabled

Application Groups 0 - 1 Groups 0 - 3

SoftDevice Groups 2 - 3 -

13.6 SVC number ranges
Application programs and SoftDevices use certain SVC numbers.

The table below shows which SVC numbers an application program can use and which numbers are used by
the SoftDevice.

Important: The SVC number allocation does not change with the state of the SoftDevice (enabled or
disabled).

Table 31: SVC number allocation

SVC number allocation SoftDevice enabled SoftDevice disabled

Application 0x00-0x0F 0x00-0x0F

SoftDevice 0x10-0xFF 0x10-0xFF

13.7 External requirements
For correct operation of the SoftDevice, it is a requirement that the 16 MHz crystal oscillator (16 MHz XOSC)
startup time is less than 1.5 ms.

The external clock crystal and other related components must be chosen accordingly. Data for the device
XOSC input can be found in the product specification for the device.

Page 46

Chapter 14

Multilink scheduling
The S130stack supports up to three connections as a central, up to one connection as a peripheral, an
advertiser or broadcaster and an Observer or Scanner simultaneously.

An Initiator can only be started if there are less than three connections established as a central. Similarly, a
connectable advertiser can only be started if there is no connection as a peripheral established.

The link scheduling system in the SoftDevice uses a slot based mechanism for Central role events. Advertiser
and broadcaster events are scheduled as early as possible. Connection events as a peripheral follow the
timings dictated by the connected peer. Peripheral role events and central role events are scheduled
independently and so may occur at the same time and collide.

If roles/activities collide, their scheduling is determined by a priority system. If role A needs the radio at a time
that overlaps with role B, and role A has higher priority, role A will get the event. Role B will be blocked from
the event and its event will be rescheduled for a later time. If both role A and role B have same priority, the role
which requested the event first will get the event.

The different roles have different priorities at different times, dependent upon their state. Table 32: Scheduling
priorities on page 46 summarizes the priorities:

Table 32: Scheduling priorities

Priority (Decreasing order) Role state

First priority • Connection as a peripheral during connection
update procedure.

• Connection setup as a peripheral (waiting for ack
from peer)

• Connection as a peripheral that is about to time-
out

Second priority • Central connections that are about to time out

Third priority • Central connection setup (waiting for ack from
peer)

• Initiator
• Advertiser/Broadcaster/Scanner which has been

blocked consecutively for a few times.

Important:

An advertiser which is started while a link as a
peripheral is active, does not increase its priority
at all.

Fourth priority • All role states other than above run with this
priority.

• Flash access after it has been blocked
consecutively for a few times.

• Concurrent Multiprotocol Timeslot with high
priority.

14 Multilink scheduling

Page 47

Priority (Decreasing order) Role state

Last priority • Flash access
• Concurrent Multiprotocol Timeslot with normal

priority

As an example, if a connection as a peripheral is close to its supervision time-out it will block all other roles and
get the events it requests. In this case all other roles will be blocked if they overlap with the connection event,
and they will lose their events.

Role events run to completion and cannot be preempted by other roles, even if the role trying to preempt has
a higher priority. This is the case, for example, when role A and role B request events at overlapping time with
the same priority, and role A gets the event because it requested it earlier than role B. If role B increased its
priority and requested the event time again, it would only get the event if role A had not already started and
there was enough time to change the event schedule.

14.1 Connection timing as a central
Link events as a central are added relative to the first connected link as a central.

Figure 19: Multilink scheduling - one or more connections as a central, factored intervals on page 47 shows
a scenario where there are two links as a central established. C0 events correspond to the first connection as
a central made and C1 events correspond to the second connection made. C1 events are initially offset from
C0 events by tEEO milliseconds. C1 events, in this example, have exactly double the connection interval of C0
events (the connection intervals have a common factor which is “connectionInterval 0”), so the events remain
forever offset by tEEO ms.

Figure 19: Multilink scheduling - one or more connections as a central, factored intervals

In Figure 20: Multilink scheduling - one or more connections as a central, unfactored intervals on page 47
the connection intervals do not have a common factor. This connection parameter configuration is possible,
though this will result in dropped packets when events overlap. In this scenario, the second event shown for
C1 is dropped because it collides with the C0 event.

Figure 20: Multilink scheduling - one or more connections as a central, unfactored intervals

14 Multilink scheduling

Page 48

Table 33: Multilink central role timing ranges

Value Description Range (μs)

tEEO Refer to Table 14: Radio
Notification figure labels on page
23.

Refer to Table 15: BLE Radio
Notification timing ranges on page
24.

tScanReserved Reserved time needed by the
SoftDevice for each ScanWindow

1000

Figure 21: Multilink scheduling with maximum connections as a central and minimum interval on page 48
shows the maximum number of links as a central possible at a time (3) with the minimum connection interval
possible without having event collisions and dropped packets (7.5 ms). In this case, all available event time is
used for the links as a central.

Figure 21: Multilink scheduling with maximum connections as a central and minimum interval

Figure 22: Multilink scheduling with maximum connections as a central and interval > min on page 48
shows a scenario where the connInterval is longer than the minimum, and Central 1 has been disconnected
or does not have an event in this time period. It shows idle event time for each connection interval, and the
remaining connections as a central maintain their timing offsets without the other links.

Figure 22: Multilink scheduling with maximum connections as a central and interval > min

14.2 Scanner timing
This section describes scanner timing with different connections.

Figure 23: Scanner timing - no active connections on page 48 shows that when scanning for advertisers
with no active connections, the scan interval and window can be any value within the Bluetooth Core
Specification.

Figure 23: Scanner timing - no active connections

14 Multilink scheduling

Page 49

Figure 24: Scanner timing - one connection as a central on page 49 shows that when there is an active
connection, the scanner or observer role will be started synchronously with the first connected link as a
central at a distance of 3(tEEO)ms. With scanInterval equal to the connectionInterval and a scanWindow ≤
connectionInterval - (3*tEEO+ tScanReserved)ms, scanning will proceed without packet loss.

Figure 24: Scanner timing - one connection as a central

Figure 25: Scanner timing - one connection, long window on page 49 shows a scanner with a long
scanWindow which will cause some connection events to be dropped.

Figure 25: Scanner timing - one connection, long window

If all links as a central have a short connection interval (7.5 ms) and the scanner is started, the scanner events
will collide with link events as a central causing packets on connections to be dropped as shown in Figure 26:
Scanner timing - minimum connection interval on page 49.

Figure 26: Scanner timing - minimum connection interval

14.3 Initiator timing
This section introduces the different situations what happens with the initiator when establishing a
connection.

When establishing a connection with no other connections active, the initiator will establish the connection in
the minimum time and allocate the first Central link connection event 1.25 ms after the connect request was
sent, as shown in Figure 27: Initiator - first connection on page 50.

14 Multilink scheduling

Page 50

Figure 27: Initiator - first connection

When establishing a new connection with other connections already made as a central, the initiator will start
asynchronously to the connected link events and position the new Central connection’s first event in a free
slot between existing central events. Figure 28: Initiator - one or more connections as a central on page 50
illustrates this when all existing central connections have the same connection interval and the initiator starts
around the same time as the 1st Central connection (C0) event in the schedule. The new connection, C1, is
positioned in the available slot between C0 and C2.

Figure 28: Initiator - one or more connections as a central

When establishing connections to newly discovered devices, the scanner may be used for discovery followed
by the initiator. In Figure 29: Initiator - fast connection on page 50, the initiator is started directly after
discovering a new device to connect as fast as possible to that device. The result is some connection events
being dropped while the initiator runs. Events scheduled in the transmit window offset will not be dropped
(C2). In this case the 2nd peer connection schedule is available (C1), and is allocated for the new connection.

Figure 29: Initiator - fast connection

Important:

The inititator is scheduled asynchronously to any other role and assigned higher priority to ensure faster
connection setup.

14.4 Advertiser (connectable and non-connectable) timing
Advertiser is started as early as possible, asynchronously to any other role events. If no roles are running,
advertiser is able to start and run without any collision.

14 Multilink scheduling

Page 51

Figure 30: Advertiser

When other role events are running in addition, the advertiser role event may collide with those.

Figure 31: Advertiser collide

Directed advertiser is different compared to other advertiser types because it is not periodic. The scheduling
of the single event required by directed advertiser is done in the same way as other advertiser type events.
Directed advertiser is also started as early as possible, and its priority (refer to Table 32: Scheduling priorities
on page 46) is raised if it is blocked by other roles multiple times.

14.5 Peripheral connection setup and connection timing
Peripheral link events are added as per the timing dictated by peer central.

Figure 32: Peripheral connection setup and connection

Peripheral link events may collide with any other running role because the timing of the connection as a
peripheral is dictated by the peer.

Figure 33: Peripheral connection setup and connection with collision

14 Multilink scheduling

Page 52

Table 34: Peripheral role timing ranges

Value Description Value (μs)

tSlaveNominalWindow Listening window on slave to
receive first packet in a connection
event.

1000

(assuming 250 ppm sleep clock
accuracy on both slave and master
with 1 second connection interval)

tSlaveEventNominal Nominal event length for slave
link.

tprep(max) + tSlaveNominalWindow +
tevent (max for slave role)

Refer to Table 14: Radio
Notification figure labels on
page 23 and Table 15: BLE Radio
Notification timing ranges on page
24.

tSlaveEventMax Maximum event length for slave
link.

tSlaveEventNominal + 7 ms

Where 7 ms is added for the
maximum listening window for
500 ppm sleep clock accuracy and
4-second connection interval.

tAdvEventMax Maximum event length for
advertiser (all types except
directed advertiser) role.

tprep(max) + tevent (max for adv role

except directed adv)

Refer to Table 14: Radio
Notification figure labels on
page 23 and Table 15: BLE Radio
Notification timing ranges on page
24.

14.6 Suggested intervals and windows
The distance between each connection as a central needed to send and receive one full length BLE packet
before another event starts, is tEEO.

Therefore three link events can complete in maximum 3 * tEEO,which is around 7.5 ms (see Table 33: Multilink
central role timing ranges on page 48.

The minimum connection interval recommended for three connections is 7.5 ms. Note that this does not leave
sufficient time in the schedule for scanning or initiating new connections (when the number of connections
already established is less than three). Scanner, Observer, and Initiator events can therefore cause connection
packets to be dropped as in Figure 26: Scanner timing - minimum connection interval on page 49.

It is recommended that all connections have intervals that have a common factor. This common factor should
be 7.5 ms or more. In the case of using 7.5 ms as the common factor, all connections would have an interval of
7.5 ms or a multiple of 7.5 ms like 15 ms, 22.5 ms, 30 ms, etc.

If short connection intervals are not essential to the application and there is a need to have a scanner and/
or initiator running at the same time as connections (an initiator will have to be started to establish new
connections), then it is possible to avoid dropping packets on any connection connection as a central by
having a connection interval larger than 7.5 ms plus the scanWindow plus tScanReserved. In this case, three
connections and a scanner/initiator window can complete within each connection interval.

14 Multilink scheduling

Page 53

As an example, setting the connection interval to 40 ms will allow three connection events and a scanner/
initiator window of 31.0 ms, which is sufficient to ensure advertising packets from a 20 ms (nominal) advertiser
hitting and being responded to within the window.

To summarize, a recommended configuration for operation without dropped packets for cases of only central
roles running is:

1. The minimum Central connection intervals should be ≥ 3 * tEEO+ scanWindow + tScanReserved.
2. All connections as a central should have connection intervals that have a common factor. This common

factor should be 7.5 ms or more. For example [15 ms, 22.5 ms, 30 ms, 200 ms…] or [75 ms, 150 ms, 225 ms],
etc.

3. Scanner, Observer, and Initiator roles should have intervals which can be factored by the smallest
connection interval and the window should be ≤ connectionInterval – 3 * tEEO– tScanReserved.

Peripheral roles use the same time space as all other roles (including any other peripheral and central roles),
hence a collision free schedule cannot be guaranteed if a peripheral role is running along with any other role.
The probability of collision can be reduced (though not eliminated) if the central role link parameters are set as
suggested in this section, and the following rules are applied for all roles:

• The minimum interval of any roles is > = 3*tEEO + (tScanReserved + ScanWindow) + tSlaveEventNominal +
tAdvEventMax

Important:

tSlaveEventNominal can be used in above equation in most cases, but should be replaced by
tSlaveEventMax for cases where links as a peripheral can have worst sleep clock accuracy and longer
connection interval.

• Connections as a peripheral also follow the constraint of connection interval having common factor of 7.5
ms or more, similar to connections as a central.

• Broadcaster and Advertiser roles also follow the constraint of interval which can be factored by the smallest
connection interval.

Important:

Directed advertiser is not considered here because that is not a periodic event.

If the above conditions are met, the worst case collision scenario will be broadcaster, connection as a
peripheral, initiator and a connection as a central colliding in time. This will result in collision resolution
via priority mechanism. The worst case collision will be reduced if any of the above roles are not running.
For example, in the case of only connections as a central and slave connection is running, in the worst case
each role will get a timeslot half the time because they both run with the same priority (Refer to Table 32:
Scheduling priorities on page 46). Figure 34: Maximum links running as a central and peripheral on page
53 shows this case of collision.

Important:

These are worst case collision numbers, and an average case might be better.

Figure 34: Maximum links running as a central and peripheral

Packet drops might happen due to collision between different roles, as is explained above. Application should
tolerate dropped packets by setting the supervision time-out for connections long enough to avoid loss of

14 Multilink scheduling

Page 54

connection when packets are dropped. For example, in the case of only connections as a central and a slave
connection is running, in the worst case each role will get a timeslot half the time. To accommodate this
packet drop, the application should set the supervision time-out to twice the size it would have set if only
either central or peripheral role was running.

Page 55

Chapter 15

Processor availability and interrupt
latency
This section documents key SoftDevice performance parameters for processor availability and interrupt
latency.

15.1 Interrupt latency due to System on Chip (SoC) framework
This section describes latency introduced by the SoftDevice when managing interrupt events.

Latency, additional to ARM® CortexTMM0 hardware architecture latency, is introduced by SoftDevice logic
to manage interrupt events. This latency occurs when an interrupt is forwarded to the application from the
SoftDevice and is part of the minimum latency for each application interrupt. Additional latency is incurred
due to interrupt processing and forwarding performed by the Master Boot Record (MBR). The maximum
application interrupt latency is dependent on protocol stack activity as described in section Processor
availability on page 55.

Table 35: Additional latency due to SoftDevice and MBR processing

CPU cyclesInterrupt

SoftDevice enabled SoftDevice disabled

Open peripheral interrupt 54 30

Blocked or restricted peripheral interrupt (only
forwarded when SoftDevice disabled)

N/A 37

Application SVC interrupt 59 59

15.2 Processor availability
This section gives an overview of interrupt levels and interrupt usage by the SoftDevice during protocol
events.

Appendix A: SoftDevice architecture on page 73 describes interrupt management in SoftDevices and is
required knowledge for understanding this section.

The SoftDevice protocol stack runs in the LowerStack and UpperStack interrupts. These protocol stack
interrupts determine the processor availability and latencies for the interrupts/priorities available to the
application - App(H), App(L), and main.

LowerStack processing will determine the processor availability and interrupt latency for App(H) (and all
lower priorities), while LowerStack, App(H), and UpperStack processing together will determine the processor
availability for App(L) and main context. The figure below illustrates UpperStack activity (API calls) and
LowerStack activity (Protocol events) and the time reserved/not reserved for those interrupts.

15 Processor availability and interrupt latency

Page 56

Figure 35: UpperStack and LowerStack activity

15.2.1 SoftDevice interrupt latency definitions
This section describes the parameters used for interrupt latency timings.

Table 36: SoftDevice interrupt latency definitions

Parameter Description

tISR

(LowerStack)

Interrupt processing time in LowerStack. This is the
minimum interrupt latency for App(H) (and lower
priorities).

tnISR

(LowerStack)

Time between LowerStack interrupts. This is the time
available to run for App(H) (and lower priorities).

tISR

(UpperStack)

Interrupt processing time in UpperStack. This is the
minimum interrupt latency for App(L) and processing
latency for main context.

tnISR

(UpperStack)

Time between UpperStack interrupts. This is the time
available to run for App(L) and main context.

15.3 BLE peripheral performance
This section describes the processor availability and interrupt latency for the BLE peripheral stack.

The interrupt latency and processor availability interrupt latencies are dependent upon whether the
SoftDevice uses CPU Suspend12 during radio activity or not.

12 CPU Suspend: During BLE protocol events, LowerStack interrupts are extended by a CPU Suspend
state during radio activity to improve link integrity. This means that LowerStack interrupts will block
application and UpperStack processing during a Radio Activity for a time proportional to the number of
packets transferred during the Radio activity period.

15 Processor availability and interrupt latency

Page 57

For all S130 SoftDevice versions CPU Suspend is by default not enabled, but may optionally be enabled for
compatibility with older versions of nRF51 ICs. This document describes interrupt latency and CPU availability
when CPU Suspend is not used.

Figure 36: Advertising

For advertising, the pattern of LowerStack activity is as follows:

First, there is Radio prepare, which is followed by Radio start that starts the actual advertising. Depending
upon the type of advertising, this may be followed by one or more instances of Radio processing (including
UpperStack processing) and further reception/transmission. Finally, advertising ends with post processing and
some UpperStack activity.

Table 37: Interrupt latency for advertising

Parameter Description Min Typical Max

tISR(LowerStack),RadioPrepare Interrupt latency preparing the
radio for advertising.

80 μs

tISR(LowerStack),RadioStart Interrupt latency starting the
advertising.

40 μs

tISR(LowerStack),RadioProcessing Processing after sending/receiving
a packet.

60 μs

tISR(LowerStack),PostProcessing Interrupt latency at the end of an
advertising event.

250 μs 640 μs

tnISR(LowerStack) Distance between interrupts during
advertising.

40 μs 250 μs

tISR(UpperStack) UpperStack interrupt at the end of
an advertising event.

300 μs 1.5 ms

15.3.1 BLE peripheral connection
In a connection event, the LowerStack activity is typically as follows: First there is Radio prepare and then
Radio start, which starts the actual connection event (reception).

When the reception is finished, there is a Radio processing including a switch to transmission. When the
transmission is finished, there is either a Radio processing including a switch back to reception and possibly a
new transmission after that, or the event ends with Post processing.

15 Processor availability and interrupt latency

Page 58

After the LowerStack Post processing, the UpperStack processes any received packets with data, executes
GATT, ATT or SMP operations and generates events to the application as required. The UpperStack interrupt is
therefore highly variable based on the stack operations executed.

Figure 37: Peripheral connection events

The data in the table below is for a connection under good conditions. Continued packet loss, clock drift,
and other effects may force longer Radio activity and longer LowerStack processing. This may affect the CPU
availability and interrupt latency for lower priorities.

Table 38: Interrupt latency when connected

Parameter Description Min Typical Max

tISR(LowerStack),RadioPrepare Interrupt latency preparing the radio
for a connection event.

130 μs

tISR(LowerStack),RadioStart Interrupt latency starting the
connection event.

40 μs

tISR(LowerStack),RadioProcessing Interrupt latency after sending or
receiving a packet.

100 μs

tISR(LowerStack),PostProcessing Interrupt latency at the end of a
connection event.

300 μs 720 μs

tnISR(LowerStack) Distance between interrupts during a
connection event.

30 μs 150 μs

tISR(UpperStack) UpperStack interrupt processing. 500 μs 1.5 ms

15.4 BLE central performance
This section describes the processor availability and interrupt latency for the BLE central stack.

15 Processor availability and interrupt latency

Page 59

The interrupt latency and processor availability interrupt latencies are dependent upon whether the
SoftDevice uses CPU Suspend13 during radio activity or not. See section BLE peripheral performance on page
56 for more information on when CPU Suspend is enabled.

Figure 38: Scanning or initiating

For scanning and initiating, the pattern of LowerStack activity is as follows: First, there is Radio prepare, which
is followed by Radio start that starts the actual scanning or initiating.

During scanning, there will be zero or more instances of Radio processing, depending upon whether the
scanning is passive or active, whether advertising packets are received or not and upon the type of the
received advertising packets. Such Radio processing may be followed by UpperStack processing.

During initiating a connectable advertising packet may be received. Packet reception will cause radio
processing, which may result in sending a connect request before ending initiating.

Scanning and initiating ends with Post processing and some UpperStack activity.

Table 39: Interrupt latency for passive scanning or initiating

Parameter Description Min Typical Max

tISR(LowerStack),RadioPrepare Interrupt latency preparing the radio
for scanning or initiating.

140 μs

tISR(LowerStack),RadioStart Interrupt latency starting the scan or
initiation.

100 μs

tISR(LowerStack),RadioProcessing Processing after sending/receiving
packet.

130 μs

tISR(LowerStack),PostProcessing Interrupt latency at the end of a
scanner or initiator event.

250 μs 650 μs

tnISR(LowerStack) Distance between interrupts during
scanning.

30 μs 2 ms

tISR(UpperStack) UpperStack interrupt at the end of a
scanner or initiator event.

300 μs 1.5 ms

13 CPU Suspend: During BLE protocol events, LowerStack interrupts are extended by a CPU Suspend
state during radio activity to improve link integrity. This means that LowerStack interrupts will block
application and UpperStack processing during a Radio Activity for a time proportional to the number of
packets transferred during the Radio activity period.

15 Processor availability and interrupt latency

Page 60

15.4.1 Central connection event interrupt latency
In a connection event, the LowerStack activity is as follows: First there is Radio prepare and then Radio start,
which starts the actual connection event (transmission).

When the transmission is finished, there is Radio processing including a switch to reception. When the
reception is finished, the event ends with Post processing.

Figure 39: Central connection events

After the LowerStack Post processing, the UpperStack processes any received packets with data, executes
GATT, ATT or SMP operations and generates events to the application as required. The UpperStack interrupt
is therefore highly variable based on the stack operations executed. Interrupt latency during connections is
outlined in the table below.

Table 40: Interrupt latency when connected

Parameter Description Min Typical Max

tISR(LowerStack),RadioPrepareInterrupt latency
preparing the radio
for a connection
event.

130 μs

tISR(LowerStack),RadioStart Interrupt latency
starting the
connection event.

100 μs

tISR(LowerStack),RadioProcessingInterrupt latency
after sending a
packet.

100 μs

tISR(LowerStack),PostProcessingInterrupt latency
at the end of a
connection event.

350 μs 780 μs

tnISR(LowerStack) Distance between
connection event
interrupts.

30 μs 150 μs

15 Processor availability and interrupt latency

Page 61

Parameter Description Min Typical Max

tISR(UpperStack) UpperStack
interrupt
processing.

500 μs 1.5 ms

15.5 BLE CPU utilization
This section shows the CPU capacity available for an application with different configurations of peers
connected.

The available CPU capacity depends on the number of peers connected, connection interval, and data
throughput.

For the data collected in Table 41: CPU capacity available for the application, with the SoftDevice managing
connections and receiving data from peers simultaneously on page 61, each peer is sending 1 packet per
connection interval with 5 bytes of data. For the idle test the links are being maintained but no data sent.

The last row in the table shows the SoftDevice is receiving write requests from 3 peripherals and 1 central.
It processes those requests and sends responses to all 4 peers on a connection interval of 150 ms. The
SoftDevice uses 4% of the processor time, and leaves 96% for the customer’s application.

When receiving notifications from 4 peers (without responses), the CPU is free 97% of the time.

Table 41: CPU capacity available for the application, with the SoftDevice managing connections and
receiving data from peers simultaneously

Peers connected Connection
interval

RX write requests
with response

CPU free

RX notifications

CPU free

Idle

CPU free

1 peripheral

1 peripheral

1 peripheral

1 peripheral

7.5 ms

20.0 ms

100.0 ms

150.0 ms

88%

95%

98%

98%

86%

94%

98%

98%

91%

96%

98%

98%

1 central

1 central

1 central

1 central

7.5 ms

20.0 ms

100.0 ms

150.0 ms

88%

95%

98%

98%

85%

94%

98%

98%

91%

96%

98%

98%

3 peripherals

3 peripherals

3 peripherals

3 peripherals

7.5 ms

20.0 ms

100.0 ms

150.0 ms

62%

86%

96%

97%

55%

83%

96%

97%

73%

89%

97%

98%

3 peripherals

3 peripherals

3 peripherals

3 peripherals

7.5 ms

20.0 ms

100.0 ms

150.0 ms

69%

79%

95%

96%

63%

86%

94%

96%

77%

85%

96%

97%

15 Processor availability and interrupt latency

Page 62

15.6 Performance with Flash memory API, Concurrent Multiprotocol Timeslot
API and multiple roles
Use of the Flash memory and the Concurrent Multiprotocol Timeslot API may affect CPU availability.

The LowerStack interrupt is also used by the Flash memory API processing and by the Concurrent
Multiprotocol Timeslot API processing. Therefore the use of these APIs may affect CPU availability and
interrupt latencies for all lower priorities. The effects of this are dependent upon the application and the use
case.

Page 63

Chapter 16

BLE data throughput
To achieve maximum data throughput, the application must exchange data at a rate that matches on-air
packet transmissions and use the maximum data payload per packet.

The maximum data throughput limits in Table 42: GATT maximum data throughput as a peripheral with a
connection interval of 7.5 ms on page 63 and Table 43: GATT maximum data throughput as a central for
each connection on page 63 apply to packet transfers under the following common conditions:

• Encrypted link
• CPU Suspend (Radio CPU mutex) not enabled

Table 42: GATT maximum data throughput as a peripheral with a connection interval of 7.5 ms

Protocol Role Method Maximum data
throughput

GATT Client Receive Notification

Send Write command

Send Write request

Simultaneous receive
Notification and send
Write command

63.4 kbps

42.6 kbps

10.6 kbps

50.8 kbps (each direction)

GATT Server Send Notification

Receive Write command

Receive Write request

Simultaneous send
Notification and receive
Write command

42.6 kbps

63.4 kbps

10.6 kbps

50.8 kbps (each direction)

Table 43: GATT maximum data throughput as a central for each connection

Protocol Role Method Number of
connected
peripherals

Connection
interval (ms)

Maximum data
throughput

Receive
Notification

1 - 3

1 - 3

20

50

8 kbps

3.2 kbps

Send Write
command

1 - 3

1 - 3

20

50

8 kbps

3.2 kbps
GATT Client

Send Write
request

1 - 3

1 - 3

20

50

4 kbps

1.6 kbps

16 BLE data throughput

Page 64

Protocol Role Method Number of
connected
peripherals

Connection
interval (ms)

Maximum data
throughput

Simultaneous
receive
Notification
and send Write
command

1

1 - 3

1 - 3

7.5

20

50

21.3 kbps (each
direction)

8 kbps (each
direction)

3.2 kbps (each
direction)

Send
Notification

1 - 3

1 - 3

20

50

8 kbps

3.2 kbps

Receive Write
command

1 - 3

1 - 3

20

50

8 kbps

3.2 kbps

Receive Write
request

1 - 3

1 - 3

20

50

4 kbps

1.6 kbps

GATT Server

Simultaneous
send
Notification and
receive Write
command

1

1 - 3

1 - 3

7.5

20

50

21.3 kbps (each
direction)

8 kbps (each
direction)

3.2 kbps (each
direction)

Important:

1. 1 kbps = 1000 bits per second
2. Values are rounded to the closest 0.1 kbps

Page 65

Chapter 17

BLE power profiles
Power profiles give a detailed overview of the stages of a Radio Event, the approximate timing of stages within
the event, and how to calculate the peak current at each stage using data from the product specification.

This section provides power profiles for MCU activity during Bluetooth low energy Radio Events implemented
in the SoftDevice.

The LowerStack CPU profile during the event is shown separately. These profiles are based on typical events
with empty packets.

17.1 Advertising event
This section gives an overview of the power profile of the advertising event implemented in the SoftDevice.

Figure 40: Advertising event

Table 44: Advertising event

Stage Description Current calculation14

(A) Pre-processing ION + IRTC + IX32k + ICPU,Flash + ISTART,X16M

17 BLE power profiles

Page 66

Stage Description Current calculation14

(B) Standby + XO ramp ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio start/switch ION + IRTC + IX32k + IX16M + #I(START,TX) + ICPU,Flash

(E) Radio start ION + IRTC + IX32k + IX16M + #(ISTART,TX)

(F) Radio TX ION + IRTC + IX32k + IX16M + ITX,0dBM

(G) Radio turn-around ION + IRTC + IX32k + IX16M + #(ISTART,RX)+ ICPU,Flash

(H) Radio RX ION + IRTC + IX32k + IX16M + IRX

(I) Post-processing ION + IRTC + IX32k + ICPU,Flash

(J) Idle ION + IRTC + IX32k

Important:

When using the 32.768 kHz RC oscillator, IRC32k must be used instead of IX32k.

17.2 Peripheral connection event
This section gives an overview of the power profile of the peripheral connection event implemented in the
SoftDevice.

17 BLE power profiles

Page 67

Figure 41: Peripheral connection event

Table 45: Peripheral connection event

Stage Description Current Calculation15

(A) Pre-processing ION + IRTC + IX32k + ICPU,Flash + ISTART,X16M

(B) Standby + XO
ramp

ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio start ION + IRTC + IX32k + IX16M +#(ISTART,RX) + ICPU,Flash

(E) Radio RX ION + IRTC + IX32k + IX16M + IRX + ICRYPTO

(F) Radio turn-around ION + IRTC + IX32k + IX16M + #(ISTART,TX) + ICPU,Flash

(G) Radio TX ION + IRTC + IX32k + IX16M + ITX,0dBM + ICRYPTO

(H) Post-processing ION + IRTC + IX32k + ICPU,Flash

(I) Idle - connected ION + IRTC + IX32k

17 BLE power profiles

Page 68

Important:

When using the 32.768 kHz RC oscillator, IRC32k must be used instead of IX32k.

17.3 Scanning event
This section gives an overview of the power profile of the scanning event implemented in the SoftDevice.

Figure 42: Scanning event

Table 46: Scanning event

Stage Description Current Calculation16

(A) Pre-processing ION + IRTC + IX32k + ICPU,Flash

(B) Standby + XO ramp ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio start ION + IRTC + IX32k + IX16M +
#(ISTART,RX) + ICPU,Flash

(E) Radio RX ION + IRTC + IX32k + IX16M + IRX

(F) Post-processing ION + IRTC + IX32k + ICPU,Flash

(G) Idle - connected ION + IRTC + IX32k

Important:

17 BLE power profiles

Page 69

When using the 32.768 kHz RC oscillator, IRC32k must be used instead of IX32k.

17.4 Central connection event
This section gives an overview of the power profile of the central connection event implemented in the
SoftDevice.

Figure 43: Central connection event

Table 47: Central connection event

Stage Description Current Calculation17

(A) Pre-processing ION + IRTC + IX32k + ICPU,Flash

(B) Standby + XO ramp ION + IRTC + IX32k + ISTART,X16M

(C) Standby ION + IRTC + IX32k + IX16M

(D) Radio start ION + IRTC + IX32k + IX16M +
#(ISTART,TX) + ICPU,Flash

(E) Radio TX ION + IRTC + IX32k + IX16M + ITX,0dBM

(F) Radio turn-around ION + IRTC + IX32k + IX16M +
#(ISTART,RX) + ICPU,Flash

17 BLE power profiles

Page 70

Stage Description Current Calculation17

(G) Radio RX ION + IRTC + IX32k + IX16M + IRX

(H) Post-processing ION + IRTC + IX32k + ICPU,Flash

(I) Idle - connected ION + IRTC + IX32k

Important:

When using the 32.768 kHz RC oscillator, IRC32k must be used instead of IX32k.

Page 71

Chapter 18

SoftDevice identification and
revision scheme
The SoftDevices are identified by the SoftDevice part code, a qualified IC partcode (for example, nRF51822),
and a version string.

The identification scheme for SoftDevices consists of the following items:

• For revisions of the SoftDevice which are production qualified, the version string consists of major, minor,
and revision numbers only, as described in the table below.

• or revisions of the SoftDevice which are not production qualified, a build number and a test qualification
level (alpha/beta) are appended to the version string.

• For example: s110_nrf51_1.2.3-4.alpha, where major = 1, minor = 2, revision = 3, build number = 4 and test
qualification level is alpha. Additional examples are given in table Table 49: SoftDevice revision examples
on page 71.

Table 48: Revision scheme

Revision Description

Major increments Modifications to the API or the function or behavior
of the implementation or part of it have changed.

Changes as per minor increment may have been
made.

Application code will not be compatible without
some modification.

Minor increments Additional features and/or API calls are available.

Changes as per minor increment may have been
made.

Application code may have to be modified to take
advantage of new features.

Revision increments Issues have been resolved or improvements to
performance implemented.

Existing application code will not require any
modification.

Build number increment (if present) New build of non-production versions.

Table 49: SoftDevice revision examples

Sequence number Description

s110_nrf51_1.2.3-1.alpha Revision 1.2.3, first build, qualified at alpha level

s110_nrf51_1.2.3-2.alpha Revision 1.2.3, second build, qualified at alpha level

18 SoftDevice identification and revision scheme

Page 72

Sequence number Description

s110_nrf51_1.2.3-5.beta Revision 1.2.3, fifth build, qualified at beta level

s110_nrf51_1.2.3 Revision 1.2.3, qualified at production level

Table 50: Test qualification levels

Qualification Description

Alpha • Development release suitable for prototype
application development.

• Hardware integration testing is not complete.
• Known issues may not be fixed between alpha

releases.
• Incomplete and subject to change.

Beta • Development release suitable for application
development.

• In addition to alpha qualification:

• Hardware integration testing is complete.
• Stable, but may not be feature complete and

may contain known issues.
• Protocol implementations are tested for

conformance and interoperability.

Production • Qualified release suitable for production
integration.

• In addition to beta qualification:

• Hardware integration tested over supported
range of operating conditions.

• Stable and complete with no known issues.
• Protocol implementations conform to

standards.

18.1 MBR distribution and revision scheme
The MBR is distributed in each SoftDevice hex file.

The version of the MBR distributed with the SoftDevice will be published in the release notes for the
SoftDevice and uses the same major, minor and revision numbering scheme as described here.

Page 73

Chapter 19

Appendix A: SoftDevice
architecture
A SoftDevice is precompiled and linked binary software implementing a wireless protocol.

Figure 44: Software architecture block diagram on page 73 is a block diagram of the nRF51 series software
architecture including the standard ARM® CMSIS interface for nRF51 hardware, profile and application code,
application specific peripheral drivers, and a firmware module identified as a SoftDevice.

While the SoftDevice is software, application developers have minimal compile-time dependence on its
features. The unique hardware and software supported framework in which it executes, provides run time
isolation and determinism in its behavior. These characteristics make the interface comparable to a hardware
peripheral abstraction with a functional, programmatic interface.

The SoftDevice Application Program Interface (API) is available to applications as a high-level programming
language interface.

Figure 44: Software architecture block diagram

A SoftDevice consists of three main components:

• SoC Library - Implementation and nRF API for shared hardware resource management (application
coexistence).

19 Appendix A: SoftDevice architecture

Page 74

• SoftDevice Manager - Implementation and nRF API for SoftDevice management (enabling/disabling the
SoftDevice, etc.).

• Protocol stack - Implementation of protocol stack and API.

When the SoftDevice is disabled, only the SoftDevice Manager API is available for the application. For more
information about enabling/disabling the SoftDevice, see SoftDevice enable and disable on page 81.

19.1 System on Chip (SoC) library
The System on Chip (SoC) library provides functions for accessing shared hardware resources.

The features of this library will vary between implementations of SoftDevices so detailed descriptions of the
SoC library API are made available with the Software Development Kits (SDK) specific to each SoftDevice.

Table 51: Common components in the SoC library

Component Description

NVIC Wrapper functions for the CMSIS NVIC functions
provided by ARM®.

Important:

To ensure reliable usage of the SoftDevice you must
use the wrapper functions when the SoftDevice is
enabled.

MUTEX Disabling interrupts shall not be done while the
SoftDevice is enabled. Mutex functions have been
implemented to provide safe regions.

RAND Random number generator - hardware sharing
between SoftDevice and application.

POWER Power management - Functions for power
management.

CLOCK Clock management – Functions for managing clock
sources.

PPI Safe PPI access to dedicated Application PPI
channels.

PWR_MNG Power management support (not a full
implementation) for the application.

19.2 SoftDevice Manager
The SoftDevice Manager (SDM) API implements functions for controlling the state of the SoftDevice enabled/
disabled.

When enabled, the SDM configures low frequency clock (LFCLK) source, interrupt management and the
embedded protocol stack.

Detailed documentation of the SDM API is made available with the Software Development Kits (SDK) specific
to each SoftDevice.

19 Appendix A: SoftDevice architecture

Page 75

19.3 Protocol stack
The major component in each SoftDevice is a wireless protocol stack providing abstract control of the RF
transceiver features for wireless applications.

For example, fully qualified Bluetooth low energy and ANT™ protocols layers may be implemented in a
SoftDevice to provide application developers with an out-of-the-box solution for applications using standard
2.4 GHz protocols.

19.4 Application Program Interface (API)
In addition to a Protocol API enabling wireless applications, there is an nRF API that provides the API for both
the SoftDevice Manager and the SoC library.

The nRF API is consistent across SoftDevices in the nRF51 range of ANT™ and Bluetooth products for code
compatibility.

All SoftDevice APIs are implemented using thread-safe Supervisor Calls (SVC). All application interaction with
the stack and libraries is asynchronous and event driven. From the application's point of view these look like
regular functions, but no linking against a library is required. All SVC interface functions are provided through
header files for the SDM, SoC Library, and protocol(s).

SV calls are conceptually software triggered interrupts with a procedure call standard for parameter passing
and return values. Each API call generates an interrupt allowing single-thread API context and SoftDevice
function locations to be independent from the application perspective at compile-time. SoftDevice API
functions can only be called from a lower interrupt priority than the SVC priority. For more information, see
Exception (interrupt) management with a SoftDevice on page 78.

19.5 Memory isolation and run time protection
SoftDevice program memory, data memory and peripherals can be sandboxed to prevent SoftDevice program
corruption by the application ensuring robust and predictable performance.

Sandboxing18 is enabled by writing the start address of the application program memory to UICR.CLENR0.

Program memory and RAM are divided into two regions using registers. Region 0 is occupied by the
SoftDevice while Region 1 is available to the application.

Code regions are defined when programming a SoftDevice by setting a register defining program code
length. RAM regions are defined at run-time when the SoftDevice is enabled. The figure below presents an
overview of the regions.

18 A sandbox is a set of access rules for memory imposed on the user.

19 Appendix A: SoftDevice architecture

Page 76

Figure 45: Memory region designation

The SoftDevice uses a fixed amount of flash (program) memory. The amount of RAM used is dependent upon
whether the SoftDevice is enabled or not. The flash and RAM usage is specified by size (kilobytes or bytes) and
the CODE_R1_BASE and RAM_R1_BASE addresses which are the usable base addresses of Application code
and RAM respectively. Application code must be located between CODE_R1_BASE and SizeOfProgMem while
the Application RAM must be allocated between RAM_R1_BASE and the top of RAM, excluding the allocation
for the call stack and heap.

Example Application program code address range:

CODE_R1_BASE ≤ Program ≤ SizeOfProgMem

Example Application RAM address range assuming call stack and heap location as shown in:

RAM_R1_BASE ≤ RAM ≤ (0x2000 0000 + SizeOfRAM) - (Call Stack + Heap)

Sandboxing protects region 0 memory. Region 0 program memory cannot be written or erased at run time19.
Region 0 RAM cannot be written to by an application at run time. Violation of these rules, for example an
attempt to write to the protected Region 0 memory, will result in a system Hard Fault as defined by the ARM®

architecture. There are debugging restrictions applied to these regions which are outlined in the “Memory
Protection Unit (MPU)” chapter in the nRF51 Reference Manual that do not affect execution.

When the SoftDevice is disabled, the whole of the RAM, with the exception of a few bytes, is available to the
application. In the context of an enabled SoftDevice however, lower address space of RAM will be "consumed"
by the SoftDevice and be marked as write protected.

It is important to note that when the SoftDevice is disabled, the RAM previously used by the application
will not be restored. In practice, the application will in many cases want to specify its RAM region from the

19 An exception is replacing the SoftDevice using MBR API functions.

19 Appendix A: SoftDevice architecture

Page 77

protected memory length until the end of RAM. This is to make application development easier without
having to think about what data to place where.

Notice:

• The call stack is conventionally located by the initial value of Main Stack Pointer (MSP) at the top
address of RAM.

• By default RAM1 block is OFF in System ON-mode. If the MSP initial value defined in the application
vector table is in the RAM1 block, the RAM block will be enabled before the application reset vector
is executed.

• Do not change the value of MSP dynamically (i.e. never set the MSP register directly).
• RAM located in the SoftDevice's region will be modified once the SoftDevice is enabled.
• The RAM modified by the SoftDevice will not be restored on SoftDevice disable.

19.6 Call stack
The call stack is defined by the application.

The main stack pointer (MSP) gets initialized on reset to the address specified by the application vector table
entry 0. The application may, in its reset vector, configure the CPU to use the process stack pointer (PSP) in
thread mode. This configuration is optional but may be used by an operating system (OS), for example, to
isolate application threads and OS context memory. The application programmer must be aware that the
SoftDevice will use the MSP as it is always executed in exception mode.

In configurations without an OS, the main stack grows down and is shared with the nRF51 SoftDevice. The
CortexTMM0 has no hardware for detecting stack overflow, and the application is responsible for leaving
enough space both for the application itself and the nRF51 SoftDevice stack requirements.

It is customary, but not required, to let the stack run downwards from the upper limit of RAM Region 1.

Figure 46: Call stack location example

With each release of a nRF51 SoftDevice its maximum (worst case) call stack requirement is specified, see
the SoftDevice specification for more information. The SoftDevice uses the call stack when LowerStack or
UpperStack events occur. These events are asynchronous to the application so the application programmer
must reserve call stack for the application in addition to the call stack requirement for the SoftDevice.

19.7 Heap
At this time there is no heap required by nRF51 SoftDevices.

The application is free to allocate and use a heap without disrupting the function of a SoftDevice.

19 Appendix A: SoftDevice architecture

Page 78

19.8 Peripheral run time protection
To prevent the application from accidentally disrupting the protocol stack in any way, the application sandbox
also protects SoftDevice peripherals.

Protected peripheral registers are readable by the application. As with program and data memory protection,
an attempt to perform a write to a protected peripheral will result in a Hard Fault. Note that peripherals are
only protected while the SoftDevice is enabled, otherwise they are available to the application. See Table
26: Peripheral protection and usage by SoftDevice on page 42 for an overview of the peripherals that are
restricted by the SoftDevice.

19.9 Exception (interrupt) management with a SoftDevice
To implement Service Call (SVC) APIs and ensure that embedded protocol real-time requirements are met
independent of application processing, the SoftDevice implements an exception model for execution.

Care must be taken when selecting the correct interrupt priority for application events according to the
guidelines that follow. The NVIC API to the SoC Library supports safe configuration of interrupt priority from
the application.

The CortexTMM0 processor has four configurable interrupt priorities ranging from 0 to 3 (with 0 being highest
priority). On reset, all interrupts are configured with the highest priority (0).

The highest priority (LowerStack) is reserved by the SoftDevice to service real-time protocol timing
requirements and thus must remain unused by the application programmer. The SoftDevice also reserves
priority 2 (UpperStack (SVC) priority). This priority is used by higher level, deferrable, SoftDevice tasks and the
API functions executed as SVC interrupts (see Application Program Interface (API) on page 75).

The application provides two configurable priorities, App(H) and App(L), in addition to the background level -
main or thread context.

19 Appendix A: SoftDevice architecture

Page 79

Figure 47: Exception model

As seen from the figure, App(H) is located between the two priorities reserved by the SoftDevice. This enables
a low-latency application interrupt to support fast sensor interfaces. The App(H) priority will only experience
latency from interrupts in the LowerStack priority, while App(L) can experience latency from LowerStack,
App(H) and UpperStack context interrupts.

19 Appendix A: SoftDevice architecture

Page 80

Figure 48: SoftDevice exception examples

19.10 Interrupt forwarding to the application
The forwarding of interrupts to the application is dependent upon SoftDevice state.

At the lowest level, the SoftDevice Manager receives all interrupts regardless of whether the SoftDevice is
enabled or not. When the SoftDevice is enabled, some interrupt numbers are reserved for use by the protocol
stack implemented in the SoftDevice and any handler defined by the application will not receive these
interrupts. The reserved interrupts directly correspond to the hardware resource usage of the SoftDevice
which can be found in the corresponding SoftDevice Specification. For example, if a SoftDevice (or embedded
protocol stack) requires the exclusive use of a peripheral “TIMER0”, that peripheral’s interrupt handler can be
implemented in the application, but will not be executed while the SoftDevice is enabled.

All interrupts corresponding to hardware peripherals not used by the SoftDevice are forwarded directly to the
application defined interrupt handler. For the SoftDevice Manager to locate the application interrupt vectors,
the application must define its interrupt vector table at the bottom of code Region 1 illustrated in the figure
below. The use of a bootloader introduces some exceptions to this, see Master Boot Record and bootloader
on page 37. In a majority of toolchains, the base address of the application code is positioned after the top
address of the SoftDevice. Then, the code can be developed as a standard ARM® CortexTMM0 application
project with the compiler creating the interrupt vector table as normal.

19 Appendix A: SoftDevice architecture

Page 81

Figure 49: Call stack location example

The SVC interrupt is handled by SoftDevice Manager and the SVC number is inspected. If equal or greater
than 0x10, the interrupt is processed by the SoftDevice. Values below 0x10 cause the SVC to be forwarded to
the application. This allows the application to make use of a range of SVC numbers for its own purpose, for
example, for an RTOS.

Important: While the CortexTMM0 allows each interrupt to be assigned to an IRQ level 0 to 3, the
priorities of the interrupts reserved by the SoftDevice cannot be changed. This includes the SVC
interrupt. Handlers running at Application High level have neither access to SoftDevice functions nor to
application specific SVCs or RTOS functions running at Application Low level.

If the SoftDevice is not enabled, all interrupts are immediately forwarded to the application specified handler.
The exception to this is that SVC interrupts with an SVC number above or equal to 0x10 are not forwarded.

19.11 Events - SoftDevice to application
Software triggered interrupts in reserved IRQ slots are used to signal events from SoftDevice to application.

For details on this technique and how to implement handling of these events, refer to the Software
Development Kit (SDK) for your device.

19.12 SoftDevice enable and disable
Before enabling the SoftDevice, you cannot use any capabilities of the SoftDevice. This extends to the use of
the SoC library and protocol stack functions.

All of the IC’s resources are freely available to the application, with some exceptions:

• SVC numbers 0x10 to 0xFF are reserved.
• SoftDevice program (flash) memory is reserved.

19 Appendix A: SoftDevice architecture

Page 82

• A few bytes of RAM are reserved.

Once the SoftDevice has been enabled, more restrictions apply:

• Some RAM will be reserved.
• Some peripherals will be reserved.
• Some of the peripherals that are reserved will have a SoC library interface.
• Interrupts will not arrive in the application for reserved peripherals.
• The reserved peripherals are reset upon SoftDevice disable.
• nrf_nvic_ functions must be used instead of CMSIS NVIC_ functions for safe use of the SoftDevice.
• Maximum interrupt latency will be determined by the SoftDevice.

Figure 50: Call stack location example

19.13 Power management
While the SoftDevice is disabled, the application must implement low-level power management by itself by
accessing the corresponding hardware register directly.

After a SoftDevice is enabled, the POWER peripheral will be protected. This means that all interactions with the
POWER peripheral must happen through the SoC Library Power API.

This API provides an interface for turning on/off peripherals and checking the power status of peripherals that
are not protected by the SoftDevice. The application will also have the ability to set the other registers in the
peripheral and put the iC in System OFF.

19.14 Error handling
All SoftDevice API functions return an error code on success and failure.

Hard Faults are triggered if an application attempts to access memory contrary to the sandbox rules or
peripheral configurations at run time.

An assertion mechanism through a registered callback can indicate fatal failures in the SoftDevice to the
application.

All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

	Contents
	Revision history
	S130 SoftDevice
	Documentation
	Product overview
	4.1 Multiprotocol support

	Bluetooth low energy protocol stack
	5.1 Profile and service support
	5.2 Bluetooth low energy features
	5.3 Limitations on procedure concurrency

	System on Chip library
	SoftDevice Manager
	SoftDevice information structure
	Flash memory API
	Radio Notification
	10.1 Radio Notification on connection events as a central
	10.2 Radio Notification on peripheral events
	10.3 Radio notification with concurrent peripheral and central events

	Concurrent Multiprotocol Timeslot API
	11.1 Request types
	11.2 Request priorities
	11.3 Timeslot length
	11.4 Scheduling
	11.5 Performance considerations
	11.6 Multiprotocol timeslot API
	11.6.1 API calls
	11.6.2 Timeslot events
	11.6.3 Timeslot signals
	11.6.4 Signal handler return actions
	11.6.5 Ending a timeslot in time
	11.6.6 The signal handler runs at LowerStack priority

	11.7 Timeslot usage examples
	11.7.1 Complete session example
	11.7.2 Blocked timeslot example
	11.7.3 Canceled timeslot example
	11.7.4 Timeslot extension example

	Master Boot Record and bootloader
	12.1 Master Boot Record
	12.2 Bootloader
	12.3 Master Boot Record (MBR) and SoftDevice reset behavior
	12.4 Master Boot Record (MBR) and SoftDevice initialization

	System on Chip resource requirements
	13.1 Attribute Table size
	13.2 Memory resource map and usage
	13.2.1 Memory resource requirements

	13.3 Hardware blocks and interrupt vectors
	13.4 Application signals – software interrupts (SWI)
	13.5 Programmable Peripheral Interconnect (PPI)
	13.6 SVC number ranges
	13.7 External requirements

	Multilink scheduling
	14.1 Connection timing as a central
	14.2 Scanner timing
	14.3 Initiator timing
	14.4 Advertiser (connectable and non-connectable) timing
	14.5 Peripheral connection setup and connection timing
	14.6 Suggested intervals and windows

	Processor availability and interrupt latency
	15.1 Interrupt latency due to System on Chip (SoC) framework
	15.2 Processor availability
	15.2.1 SoftDevice interrupt latency definitions

	15.3 BLE peripheral performance
	15.3.1 BLE peripheral connection

	15.4 BLE central performance
	15.4.1 Central connection event interrupt latency

	15.5 BLE CPU utilization
	15.6 Performance with Flash memory API, Concurrent Multiprotocol Timeslot API and multiple roles

	BLE data throughput
	BLE power profiles
	17.1 Advertising event
	17.2 Peripheral connection event
	17.3 Scanning event
	17.4 Central connection event

	SoftDevice identification and revision scheme
	18.1 MBR distribution and revision scheme

	Appendix A: SoftDevice architecture
	19.1 System on Chip (SoC) library
	19.2 SoftDevice Manager
	19.3 Protocol stack
	19.4 Application Program Interface (API)
	19.5 Memory isolation and run time protection
	19.6 Call stack
	19.7 Heap
	19.8 Peripheral run time protection
	19.9 Exception (interrupt) management with a SoftDevice
	19.10 Interrupt forwarding to the application
	19.11 Events - SoftDevice to application
	19.12 SoftDevice enable and disable
	19.13 Power management
	19.14 Error handling

